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Towards better understanding why machine learning models generalize well

Mathematical setup

e Training: given n samples from D, (x1, 1), (x2,¥2), -, (X, Yn),

[(fw) = %Zﬁ(fm/(x;).,yi)

e Test: expected risk over a random sample of D

L(fw) = E [((fw(x),y)]

(x,y)~D

e Generalization gap: How should we think about L(fi/) — I:(fw)?



Motivation back in 2017: Generalization in over-parameterized models

Modern deep networks (e.g., ResNet, BERT) have more parameters than data
labels to memorize training data [ZBH+21]
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THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
M T Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht' Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.



Motivation now in 2024: Generalization of NLP models

ACL 2025 Theme Track: Generalization of NLP
Models

Following the success of the ACL 2020-2024 Theme tracks, we are
happy to announce that ACL 2025 will have a new theme with the goal
of reflecting and stimulating discussion about the current state of
development of the field of NLP.

Generalization is crucial for ensuring that models behave robustly,
reliably, and fairly when making predictions on data different from their
training data. Achieving good generalization is critically important for
models used in real-world applications, as they should emulate
human-like behavior. Humans are known for their ability to generalize
well, and models should aspire to this standard.

The theme track invites empirical and theoretical research and position
and survey papers reflecting on the Generalization of NLP Models. The
possible topics of discussion include (but are not limited to) the
following:

« How can we enhance the generalization of NLP models across
various dimensions—compositional, structural, cross-task, cross-
lingual, cross-domain, and robustness?

« What factors affect the generalization of NLP models?

« What are the most effective methods for evaluating the
generalization capabilities of NLP models?

+ While Large Language Models (LLMs) significantly enhance the
generalization of NLP models, what are the key limitations of LLMs
in this regard?
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Prior work

e Generalization bounds: given a hypothesis space of neural nets 7, what is
the worst-case generalization gap over H?
e Rademacher complexity [BFT17]
e PAC-Bayes [AGN+18; JLZ22]
e Convergence of SGD for minimizing nonconvex functions
e Neural tangent kernels [ADH+19]: high width, fixed random matrix
o Implicit regularization [LMZ18]: starting from a small, random
initialization, SGD searches inside a low-rank space (now LoRA
[HWA+22])
e High-dimensional statistical analysis

e Precise asymptotics via random matrix theory [SC19]
e Benign overfitting [BLL+20]
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A flavor of the existing results

Neural network setup

e fiy: A multi-layer neural net with weight matrices W = [Wy, Wh, ..., W]
e D: An unknown distribution over feature space X x )

Norm Bounds for Deep Networks

e Hypothesis space

H={IMl, < s, IVall, < 52, [ Will, < s
IWilly < sir, [ Wally < sora, oo IVl < st} (1)

e Bartlett et al. [BFT17]: For any /-layer deep net fi,y whose weight matrices
W belong to #,

I /
(Hi:l 5,2) Y r?

L(fw) — L(fw) £ .

e Grows exponentially w/ depth! Tight in the worst-case



Today’s talk

Central thesis: Geometry of loss landscapes affects generalization [KMN+17]

Derivation of a Hessian measure relating to generalization
Main results

Numerical results
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Feedforward neural networks

Forward pass over an / layer network with weight matrices Wi, Wa, ..., W;:

fw(x) = 0’/(. . .0’3(W30’2(W20’1(W1X))>)

Prediction over {0,1,2,3,4,5,6,7,8,9}

SoftMax output [0.01, 0.9, 0.01, 0.01,
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

e Supervised learning: Train weights from random initialization

e Transfer learning: Adapt weights from pretrained /foundations models
(fine-tuning)



Factor #1: Measuring distance from initialization

Nagarajan and Kolter [NK19]: The distance between the initialization and the

model can affect generalization—This corresponds to the norm of the
hypothesis space
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Proof machinery: PAC-Bayes bound

Theorem [McA13]
o P = N (W 5%1d): prior distribution centered at the initialization
weights
e O = N(W') 5%1d): posterior distribution centered at the trained weights
at epoch T
e With probability at least 1 — ¢ for any § € (0,1)

. [L(fw)]SWIEQ[[(fW)}+\/KL(QH73)J;|og(4n571) )

W~Q

Theorem [Cat07]
e For any 8 € (0,1), with probability at least 1 — §

A KL(Q||P) + log(6™ ")
WIEQ [L(fw)} - 28(1—B)n (3)

JE L)) <

~

™| =



Claim #1: Relating noise stability to trace of the Hessian

Claim 1: Noise stability

Measure model stability after adding perturbations to weight parameters
[AGN+18]: Let lo(fw) = Eu [¢(fw+u)]. We have

Colfw(x), ) — Lfw(x),y) — 50° Tr [VIChw(x), )] \ <Go®  (4)
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Claim #1: Relating noise stability to trace of the Hessian

Claim 1: Noise stability
Measure model stability after adding perturbations to weight parameters

[AGN+18]: Let lo(fw) = Eu [(fw+u)]. We have

Colfw(x),y) — U(fw(x),y) — 50° T [W(fw(x),y)]H <Go® (@)

%1072 MLP %10~ BERT %1072 GNN
3] — Gap 3 — Gap 6l — Gap
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Figure 1: lllustration of the Hessian approximation. We report all measurements from
the last epoch of fine-tuning. o: standard deviation of the Gaussian noise injected into
the weight matrices. o decides the strength of regularization on the Hessian trace.
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Claim #2: Uniform convergence of the Hessian operator

Claim 2: Uniform convergence
Since the Hessian operator is Lipschitz continuous, we can show that the
trace of the Hessian satisfies the uniform convergence

11



Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

C(KL(Q|P) + log(5™))

2B(1—pB)n
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Proof sketch: start from PAC-Bayes bound

1 C(KL(Q||P) + log(5~1))
B 26(1—pB)n

C is a bound on the loss function. By Claim 1,

Lo(W) < =Lo(W)+

Lo(W) = L(W) + ";(wﬂ;:w [Tr [V2€(fw(x), y)” +0(0?)
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Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

<17 C(KL(Q[|P) + log(6~ 1))
Lo(W) < glo(w) + ==L (5)
C is a bound on the loss function. By Claim 1,
Lo(W) = L(W) + % JE. [Tr [V2€(fw(x), y)” +0(0?) (6)
Lo(W) = W) + -5~ Tr [V(fw(x). )| + O(c?) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of
order O(n~/?)

By plugging in these results back to PAC-Bayes bound (5), we get:

Loy + L0024 Gy o (24 T4 e

12



Statement of results

Fact: KL(Q||P) < % where r is radius of hypothesis space

By choosing o and 3 carefully, we obtain
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Statement of results

Fact: KL(Q||P) < % where r is radius of hypothesis space H
By choosing o and 3 carefully, we obtain

Theorem 1 [ZLJ24]

Assume: / is bounded between 0 and C, /(fi(:), ") is twice-differentiable and
V2[0(fw(-),-)] is Lipschitz continuous. Suppose for any W in 7, the trace
norm is less than o

- 2
@ S (e DIERC Tr [V Z(fw(x),y)} : (8)

and the />-norm of W is at most r for any W € #. Then, for any W in H,
with probability at least 1 — § for any ¢ > 0, the following must hold:

Car?

n

L(W) < (1 +)L(W) + (1 +¢) +0(nt1og8 ™). (9

13



Numerical results

Does Hessian-based measures correlate well with empirical measurements?
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Numerical results

Does Hessian-based measures correlate well with empirical measurements?

e Compare across seven fine-tuning methods: SGD, early stopping, weight
decay, label smoothing, mixup, distance-based regularization,
sharpness-aware minimization

1.07 Py g().S?l z 1.7 .\\
[V g ® g S
).8 ‘l‘x» E 0.6 ~ 13 ‘l\
k! T g X
).6 704 Yo 709 '\
= 07 06 05 - 0.6 0.5 0.4 0.3 - 0.5 04 0.3
Generalization error Generalization error Generalization error
(a) ResNet-50 (b) ResNet-50 (c) BERT-Base

Figure 2: The Hessian measures accurately correlate with empirical generalization
errors for seven fine-tuning methods.
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Numerical results

Does Hessian-based measures correlate well with empirical measurements?

Concurrent findings also at Lotfi et al. [LFK+-22]

PAC-Bayes Compression Bounds So Tight That They
Can Explain Generalization

SanaeLotfi*  MarcFinzi*  Sanyam Kapoor*  Andres Potapczynski®
Micah Goldblum  Andrew Gordon Wilson

New York University

Abstract

While there has been progress in developing non-vacuous generalization bounds
for deep neural networks, these bounds tend to be uninformative about why deep
leaming works. In this paper, we develop a compression approach based on quan-
tizing neural network parameters in a linear subspace, profoundly improving on
previous results o provide state-of-the-art generalization bounds on a variety of
tasks, including transfer learning. We use these tight bounds to better understand
the role of model size, equivariance, and the implicit biases of optimization, for
generalization in deep learning. Notably, we find large models can be compressed
to amuch greater extent than previously known, encapsulating Occam’s razor. We
also argue for data-independent bounds in explaining generalization.

[cs.LG] 24 Nov 2022



Outline

An algorithm to find flat minima
Hessian-based regularization

Grokking in arithmetic tasks

15



Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ¢, we could minimize
Lo = Ey [¢(fw+u)] instead
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Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ¢, we could minimize
Lo = Ey [¢(fw+u)] instead

By Claim 1 (equation (4)), this regularizes the trace of the Hessian of the loss
surface

NS0 V(W + Uy)
Wity
W;

U; -U;

Figure 2: An illustration of one update step in our algorithm
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Experimental results |

Comparison between SGD, naive noise injection (directly add noise before
computing gradient, i.e., WP-SGD), and our algorithm (NSO)

ResNet 34 x10* ResNet 34 ResNet 34
0.8 —— sap 2.
. \ —— WPsC
207 — NSO
S I\
Zoe NS
= 0.6 .
N
0.5
0 10 20 30
t
BERT Base x10' _ BERT Base
14
—— saD
2 12 == WP-SGD
S — XSO
£10
0.8

t

t t
Figure 3: Fine-tuning ResNet-34 and BERT-Base, respectively, on an image and a

text classification dataset

t
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Experimental results |

Comparison between SGD, naive noise injection (directly add noise before
computing gradient, i.e., WP-SGD), and our algorithm (NSO)

ResNet 34

ResNet 34

ResNet 31 x10!
-— 5GD B
== WP-SGD

BERT Base
1.4
== SGD
—-= WP-SGD
— NSO

Test Loss

0.8

t

t t
Figure 3: Fine-tuning ResNet-34 and BERT-Base, respectively, on an image and a

text classification dataset

Similar results for more recent architectures (multi-modal, CLIP),
chain-of-thought fine-tuning (LM, transformer) [ZLJ24]
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Experimental results Il

Grokking: A phenomenon of delayed generalization observed with training
small arithmetic datasets [PBE+22]
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(a) SGD, A =0 (b) SGD, A = 0.1 () SGD, A =1 (d) Noise Injection, A = 1

Figure 4: Training behavior with different weight decay (denoted as \) and Hessian
regularization (modulo 97).
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e Fig. 4a: No weight decay; stable, but validation acc does not reach 100%
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regularization (modulo 97).

Summary of our findings

e Fig. 4a: No weight decay; stable, but validation acc does not reach 100%
e Fig. 4b: Small weight decay; fluctuations, and validation acc does not
reach 100%
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Summary of our findings

e Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

e Fig. 4b: Small weight decay; fluctuations, and validation acc does not
reach 100%

e Fig. 4c: High weight decay; significant fluctuations, grokking is strong

e Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking



Outline

A use case: Graph neural networks
Setup and results

Numerical comparison
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Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed
for working with graph-structured data
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Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data
Notations:

e Graph G = (V,E): V is a set of vertices and E is a set of edges
e Every node has a feature vector x, for all v € V: X is the feature matrix
e Graph-level prediction: a label y € ) for each graph G

Setup: Message passing with graph diffusion matrix P,

o Let HO = X
e For the first / — 1 layers, recursively compute node embedding

H® — ¢t(xu“) + pe (Pebe(HEY)) W(“), for t=1,2,...,1 (10)

e For the last layer /, aggregate the embedding of all nodes

HO = LT p-o o, (11)
n
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Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

e Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]
e Graph isomorphism networks (GIN) [XHL+19]

21



Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

e Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]
e Graph isomorphism networks (GIN) [XHL+19]

Table 1: lllustration of the dependence on graph structure of existing results. A:
adjacency matrix, D: degree-diagonal matrix of A, /: depth of GNN

Graph Dependence | GCN | MPNN GIN | GraphSAGE |
Garg et al. [GJJ20] | d/~* d'-t - -
Liao et al. [LUZ21] | d'2° | d/—? . .

Ours [JLS+23] 1 Al | Szl | p-1a)|

-1
2
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Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

e Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]
e Graph isomorphism networks (GIN) [XHL+19]

Table 1: lllustration of the dependence on graph structure of existing results. A:
adjacency matrix, D: degree-diagonal matrix of A, /: depth of GNN

Graph Dependence | GCN | MPNN GIN | GraphSAGE |
Garg et al. [GJJ20] | d/~* d'-t - -
Liao et al. [LUZ21] | d'2° | d/—? . .

Ours [JLS+23] 1| At | Sz A At

Takeaway: Existing results scale with maximum degree d, whereas we reduce
this to spectral norm of P_ (provably < d—spectral graph theory!)
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lllustration of graph statistics

Comparison on five social networks from SNAP

212,

: I Max Degree of G
| W Spectral Norm of A

{ B Spectral Norm of DAD:

IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-M
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A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V/])

f(X,G) = %1,TPGXW(1)
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A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V/])

f(X,G) = %1,TPGXW(1)

Thus, the Euclidean norm of (X, G) is less than

1
17X, 6)l = | 217 pxw®

ngl,,T = C
n

NPl - IX1, - | w®
2

Provided that the loss function /(-, y) is Lipschitz-continuous, given N samples,

L(f) = L) 5 ﬁ

we know
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Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,
Lipschitz-continuous, first-order and second-order derivatives are both
Lipschitz-continuous. d;: number of neurons at layer /, for i =1,2,...,/

With probability at least 1 — § over N samples, for any § > 0, and any ¢ > 0,
any GNN £ with weights in 7{ (recall equation (1)) satisfies:

e max IXIBIPIE™) (2 11 )

L(F) < 1+ el f)+z 5 = (12)
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Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,
Lipschitz-continuous, first-order and second-order derivatives are both
Lipschitz-continuous. d;: number of neurons at layer /, for i =1,2,...,/

With probability at least 1 — § over N samples, for any § > 0, and any ¢ > 0,
any GNN £ with weights in 7{ (recall equation (1)) satisfies:

di( max [IXI3[1Pcl3") (7 TT 57
L(f) < (1+e)l f)+z <(X’G’y 7 )< j:1> (12)

Example: for GCN, P, = D~ Y?AD~'/2 hence |Pcll, <1
Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on d; to get size-independent sample
complexity for GNNs? Known for feedforward NN [GRS18]
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Numerical comparisons

| . Carg ot al.
102] . Liao et al.
[ = Our Re:

IMDB-B  IMDB-M COLLAB

(a) Two-layer GCN

1077

| e Garg et al.
1021 ] B Lico et al.
[ W Our Result
1015

10‘),
10%

IMDB-B IMDB-M COLLAB

(d) Two-layer MPNN

107

102
1051

10°

10*

IMDB-B  IMDB-M COLLAB
(b) Four-layer GCN

107

1027

|
|
i
B-M COLLAB

|

|

|

B
IMDB-B  IMDI

(e) Four-layer MPNN

1[]21
1013
10°
10*

||
||
||
||
|
!
B COLLAB

IMDB-B  IMD!
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Figure 5: Comparing our result and prior results Garg et al. [GJJ20] and Liao et al.
[LUZ21] on three graph classification tasks conducted on GCNs and MPNNs

25



Summary

The use of Hessian to study neural networks dates back to early work by Yann
LeCun in the 1990s through the development of second-order methods [BL+88]
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Summary

The use of Hessian to study neural networks dates back to early work by Yann
LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural
networks

e Can be used to explain a variety of phenomenon observed with neural
network training, including grokking

e Provides a new approach to prove generalization bounds for GNNs by
examining the Hessian
Open questions:
e Known sample complexity for GNN only works for graph-level prediction,
how about a framework for node-level prediction?
e Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!
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