
Generalization of neural networks: A Hessian view

Hongyang (Ryan) Zhang

Northeastern University, Boston

November 6, 2024

Problem

Towards better understanding why machine learning models generalize well

Mathematical setup

• Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW) =
1

n

n∑
i=1

ℓ(fW (xi), yi)

• Test: expected risk over a random sample of D

L(fW) = E
(x,y)∼D

[ℓ(fW (x), y)]

• Generalization gap: How should we think about L(fW)− L̂(fW)?

1

Problem

Towards better understanding why machine learning models generalize well

Mathematical setup

• Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW) =
1

n

n∑
i=1

ℓ(fW (xi), yi)

• Test: expected risk over a random sample of D

L(fW) = E
(x,y)∼D

[ℓ(fW (x), y)]

• Generalization gap: How should we think about L(fW)− L̂(fW)?

1

Problem

Towards better understanding why machine learning models generalize well

Mathematical setup

• Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW) =
1

n

n∑
i=1

ℓ(fW (xi), yi)

• Test: expected risk over a random sample of D

L(fW) = E
(x,y)∼D

[ℓ(fW (x), y)]

• Generalization gap: How should we think about L(fW)− L̂(fW)?

1

Problem

Towards better understanding why machine learning models generalize well

Mathematical setup

• Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW) =
1

n

n∑
i=1

ℓ(fW (xi), yi)

• Test: expected risk over a random sample of D

L(fW) = E
(x,y)∼D

[ℓ(fW (x), y)]

• Generalization gap: How should we think about L(fW)− L̂(fW)?

1

Motivation back in 2017: Generalization in over-parameterized models

Modern deep networks (e.g., ResNet, BERT) have more parameters than data

labels to memorize training data [ZBH+21]

2

Motivation now in 2024: Generalization of NLP models

3

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]

4

A flavor of the existing results

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl]

• D: An unknown distribution over feature space X × Y

Norm Bounds for Deep Networks

• Hypothesis space

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• Bartlett et al. [BFT17]: For any l-layer deep net fW whose weight matrices

W belong to H,

L(fW)− L̂(fW) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• Grows exponentially w/ depth! Tight in the worst-case

5

A flavor of the existing results

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl]

• D: An unknown distribution over feature space X × Y

Norm Bounds for Deep Networks

• Hypothesis space

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• Bartlett et al. [BFT17]: For any l-layer deep net fW whose weight matrices

W belong to H,

L(fW)− L̂(fW) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• Grows exponentially w/ depth! Tight in the worst-case

5

A flavor of the existing results

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl]

• D: An unknown distribution over feature space X × Y

Norm Bounds for Deep Networks

• Hypothesis space

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• Bartlett et al. [BFT17]: For any l-layer deep net fW whose weight matrices

W belong to H,

L(fW)− L̂(fW) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• Grows exponentially w/ depth! Tight in the worst-case

5

A flavor of the existing results

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl]

• D: An unknown distribution over feature space X × Y

Norm Bounds for Deep Networks

• Hypothesis space

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• Bartlett et al. [BFT17]: For any l-layer deep net fW whose weight matrices

W belong to H,

L(fW)− L̂(fW) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• Grows exponentially w/ depth! Tight in the worst-case

5

Today’s talk

Central thesis: Geometry of loss landscapes affects generalization [KMN+17]

Derivation of a Hessian measure relating to generalization

Main results

Numerical results

An algorithm to find flat minima

Hessian-based regularization

Grokking in arithmetic tasks

A use case: Graph neural networks

Setup and results

Numerical comparison

6

Feedforward neural networks

Forward pass over an l layer network with weight matrices W1,W2, . . . ,Wl :

fW (x) = σl

(
. . . σ3

(
W3σ2

(
W2σ1(W1x)

)))

• Supervised learning: Train weights from random initialization

• Transfer learning: Adapt weights from pretrained/foundations models

(fine-tuning)

7

Feedforward neural networks

Forward pass over an l layer network with weight matrices W1,W2, . . . ,Wl :

fW (x) = σl

(
. . . σ3

(
W3σ2

(
W2σ1(W1x)

)))

• Supervised learning: Train weights from random initialization

• Transfer learning: Adapt weights from pretrained/foundations models

(fine-tuning)

7

Feedforward neural networks

Forward pass over an l layer network with weight matrices W1,W2, . . . ,Wl :

fW (x) = σl

(
. . . σ3

(
W3σ2

(
W2σ1(W1x)

)))

• Supervised learning: Train weights from random initialization

• Transfer learning: Adapt weights from pretrained/foundations models

(fine-tuning)

7

Factor #1: Measuring distance from initialization

Nagarajan and Kolter [NK19]: The distance between the initialization and the

model can affect generalization—This corresponds to the norm of the

hypothesis space

2 4 6 8 10 12 14 16
Number of layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
to

p
re

-t
ra

in
ed

m
od

el
(`

2
)

Stanford-Dogs

Caltech-256

Stanford-Cars

CUB-200-2011

MIT-Indoor

Aircrafts

Flowers

8

Proof machinery: PAC-Bayes bound

Theorem [McA13]

• P = N (W (0), σ2 Id): prior distribution centered at the initialization

weights

• Q = N (W (T), σ2 Id): posterior distribution centered at the trained weights

at epoch T

• With probability at least 1− δ for any δ ∈ (0, 1)

E
W∼Q

[L(fW)] ≤ E
W∼Q

[
L̂(fW)

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

Theorem [Cat07]

• For any β ∈ (0, 1), with probability at least 1− δ

E
W∼Q

[L(fW)] ≤ 1

β
E

W∼Q

[
L̂(fW)

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)

9

Proof machinery: PAC-Bayes bound

Theorem [McA13]

• P = N (W (0), σ2 Id): prior distribution centered at the initialization

weights

• Q = N (W (T), σ2 Id): posterior distribution centered at the trained weights

at epoch T

• With probability at least 1− δ for any δ ∈ (0, 1)

E
W∼Q

[L(fW)] ≤ E
W∼Q

[
L̂(fW)

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

Theorem [Cat07]

• For any β ∈ (0, 1), with probability at least 1− δ

E
W∼Q

[L(fW)] ≤ 1

β
E

W∼Q

[
L̂(fW)

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)

9

Proof machinery: PAC-Bayes bound

Theorem [McA13]

• P = N (W (0), σ2 Id): prior distribution centered at the initialization

weights

• Q = N (W (T), σ2 Id): posterior distribution centered at the trained weights

at epoch T

• With probability at least 1− δ for any δ ∈ (0, 1)

E
W∼Q

[L(fW)] ≤ E
W∼Q

[
L̂(fW)

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

Theorem [Cat07]

• For any β ∈ (0, 1), with probability at least 1− δ

E
W∼Q

[L(fW)] ≤ 1

β
E

W∼Q

[
L̂(fW)

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)

9

Proof machinery: PAC-Bayes bound

Theorem [McA13]

• P = N (W (0), σ2 Id): prior distribution centered at the initialization

weights

• Q = N (W (T), σ2 Id): posterior distribution centered at the trained weights

at epoch T

• With probability at least 1− δ for any δ ∈ (0, 1)

E
W∼Q

[L(fW)] ≤ E
W∼Q

[
L̂(fW)

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

Theorem [Cat07]

• For any β ∈ (0, 1), with probability at least 1− δ

E
W∼Q

[L(fW)] ≤ 1

β
E

W∼Q

[
L̂(fW)

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)

9

Claim #1: Relating noise stability to trace of the Hessian

Claim 1: Noise stability

Measure model stability after adding perturbations to weight parameters

[AGN+18]: Let ℓQ(fW) = EU [ℓ(fW+U)]. We have∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
σ2 Tr

[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ
3 (4)

10

Claim #1: Relating noise stability to trace of the Hessian

Claim 1: Noise stability

Measure model stability after adding perturbations to weight parameters

[AGN+18]: Let ℓQ(fW) = EU [ℓ(fW+U)]. We have∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
σ2 Tr

[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ
3 (4)

0.020 0.025 0.030
σ

1

2

3

×10−2 MLP

Gap

Trace

0.0070 0.0075 0.0080
σ

1

2

3

×10−2 BERT

Gap

Trace

0.040 0.045 0.050
σ

2

4

6

×10−2 GNN

Gap

Trace

Figure 1: Illustration of the Hessian approximation. We report all measurements from

the last epoch of fine-tuning. σ: standard deviation of the Gaussian noise injected into

the weight matrices. σ decides the strength of regularization on the Hessian trace.

10

Claim #2: Uniform convergence of the Hessian operator

Claim 2: Uniform convergence

Since the Hessian operator is Lipschitz continuous, we can show that the

trace of the Hessian satisfies the uniform convergence

11

Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

LQ(W) ≤ 1

β
L̂Q(W) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

C is a bound on the loss function. By Claim 1,

LQ(W) = L(W) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W) = L̂(W) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n−1/2)

By plugging in these results back to PAC-Bayes bound (5), we get:

L(W) ≤ 1

β
L̂(W) +

σ2(1− β)α

2β
+

Cr 2/2σ2

2β(1− β)n
+ O

(
σ3 +

σ2√p
√
n

+
log(δ−1)

n

)

12

Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

LQ(W) ≤ 1

β
L̂Q(W) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

C is a bound on the loss function. By Claim 1,

LQ(W) = L(W) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W) = L̂(W) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n−1/2)

By plugging in these results back to PAC-Bayes bound (5), we get:

L(W) ≤ 1

β
L̂(W) +

σ2(1− β)α

2β
+

Cr 2/2σ2

2β(1− β)n
+ O

(
σ3 +

σ2√p
√
n

+
log(δ−1)

n

)

12

Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

LQ(W) ≤ 1

β
L̂Q(W) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

C is a bound on the loss function. By Claim 1,

LQ(W) = L(W) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W) = L̂(W) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n−1/2)

By plugging in these results back to PAC-Bayes bound (5), we get:

L(W) ≤ 1

β
L̂(W) +

σ2(1− β)α

2β
+

Cr 2/2σ2

2β(1− β)n
+ O

(
σ3 +

σ2√p
√
n

+
log(δ−1)

n

)

12

Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

LQ(W) ≤ 1

β
L̂Q(W) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

C is a bound on the loss function. By Claim 1,

LQ(W) = L(W) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W) = L̂(W) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n−1/2)

By plugging in these results back to PAC-Bayes bound (5), we get:

L(W) ≤ 1

β
L̂(W) +

σ2(1− β)α

2β
+

Cr 2/2σ2

2β(1− β)n
+ O

(
σ3 +

σ2√p
√
n

+
log(δ−1)

n

)

12

Statement of results

Fact: KL(Q||P) ≤ r2

2σ2 , where r is radius of hypothesis space H

By choosing σ2 and β carefully, we obtain

Theorem 1 [ZLJ24]

Assume: ℓ is bounded between 0 and C , ℓ(fW (·), ·) is twice-differentiable and

∇2[ℓ(fW (·), ·)] is Lipschitz continuous. Suppose for any W in H, the trace

norm is less than α:

α := max
W∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
, (8)

and the ℓ2-norm of W is at most r for any W ∈ H. Then, for any W in H,

with probability at least 1− δ for any δ > 0, the following must hold:

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)

√
Cαr 2

n
+ O

(
n− 3

4 log(δ−1)
)
. (9)

13

Statement of results

Fact: KL(Q||P) ≤ r2

2σ2 , where r is radius of hypothesis space H

By choosing σ2 and β carefully, we obtain

Theorem 1 [ZLJ24]

Assume: ℓ is bounded between 0 and C , ℓ(fW (·), ·) is twice-differentiable and

∇2[ℓ(fW (·), ·)] is Lipschitz continuous. Suppose for any W in H, the trace

norm is less than α:

α := max
W∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
, (8)

and the ℓ2-norm of W is at most r for any W ∈ H. Then, for any W in H,

with probability at least 1− δ for any δ > 0, the following must hold:

L(W) ≤ (1 + ϵ)L̂(W) + (1 + ϵ)

√
Cαr 2

n
+ O

(
n− 3

4 log(δ−1)
)
. (9)

13

Numerical results

Does Hessian-based measures correlate well with empirical measurements?

14

Numerical results

Does Hessian-based measures correlate well with empirical measurements?

• Compare across seven fine-tuning methods: SGD, early stopping, weight

decay, label smoothing, mixup, distance-based regularization,

sharpness-aware minimization

0.50.60.7
Generalization error

0.6

0.8

1.0

H
es

si
an

m
ea

su
re

(a) ResNet-50

0.30.40.50.6
Generalization error

0.4

0.6

0.8

H
es

si
an

m
ea

su
re

(b) ResNet-50

0.30.40.5
Generalization error

0.9

1.3

1.7

H
es

si
an

m
ea

su
re

(c) BERT-Base

Figure 2: The Hessian measures accurately correlate with empirical generalization

errors for seven fine-tuning methods.

14

Numerical results

Does Hessian-based measures correlate well with empirical measurements?

Concurrent findings also at Lotfi et al. [LFK+22]

14

Outline

Derivation of a Hessian measure relating to generalization

Main results

Numerical results

An algorithm to find flat minima

Hessian-based regularization

Grokking in arithmetic tasks

A use case: Graph neural networks

Setup and results

Numerical comparison

15

Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could minimize

ℓQ = EU [ℓ(fW+U)] instead

16

Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could minimize

ℓQ = EU [ℓ(fW+U)] instead

By Claim 1 (equation (4)), this regularizes the trace of the Hessian of the loss

surface

𝑾𝒊	
𝑼𝒊 −𝑼𝒊

∇𝑓(𝑊" + 𝑈")

∇𝑓(𝑊" − 𝑈")

𝑾𝒊#𝟏
𝐍𝐒𝐎	

Figure 2: An illustration of one update step in our algorithm

16

Experimental results I

Comparison between SGD, naive noise injection (directly add noise before

computing gradient, i.e., WP-SGD), and our algorithm (NSO)

0 10 20 30
t

0.5

0.6

0.7

0.8

T
es

t
L

os
s

ResNet 34

SGD

WP-SGD

NSO

0 10 20 30
t

0.5

1.0

1.5

2.0

T
ra

ce

×104 ResNet 34

0 10 20 30
t

0.0

0.2

0.4

0.6

G
en

er
al

iz
at

io
n

G
ap

ResNet 34

0 2 4 6
t

0.8

1.0

1.2

1.4

T
es

t
L

os
s

BERT Base

SGD

WP-SGD

NSO

0 2 4 6
t

0.1

0.4

0.7

1.0
T

ra
ce

×104 BERT Base

0 2 4 6
t

0.0

0.3

0.6

0.9

G
en

er
al

iz
at

io
n

G
ap

BERT Base

Figure 3: Fine-tuning ResNet-34 and BERT-Base, respectively, on an image and a

text classification dataset

Similar results for more recent architectures (multi-modal, CLIP),

chain-of-thought fine-tuning (LM, transformer) [ZLJ24]

17

Experimental results I

Comparison between SGD, naive noise injection (directly add noise before

computing gradient, i.e., WP-SGD), and our algorithm (NSO)

0 10 20 30
t

0.5

0.6

0.7

0.8

T
es

t
L

os
s

ResNet 34

SGD

WP-SGD

NSO

0 10 20 30
t

0.5

1.0

1.5

2.0

T
ra

ce

×104 ResNet 34

0 10 20 30
t

0.0

0.2

0.4

0.6

G
en

er
al

iz
at

io
n

G
ap

ResNet 34

0 2 4 6
t

0.8

1.0

1.2

1.4

T
es

t
L

os
s

BERT Base

SGD

WP-SGD

NSO

0 2 4 6
t

0.1

0.4

0.7

1.0
T

ra
ce

×104 BERT Base

0 2 4 6
t

0.0

0.3

0.6

0.9

G
en

er
al

iz
at

io
n

G
ap

BERT Base

Figure 3: Fine-tuning ResNet-34 and BERT-Base, respectively, on an image and a

text classification dataset

Similar results for more recent architectures (multi-modal, CLIP),

chain-of-thought fine-tuning (LM, transformer) [ZLJ24]

17

Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(a) SGD, λ = 0

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(b) SGD, λ = 0.1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(c) SGD, λ = 1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(d) Noise Injection, λ = 1

Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18

Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(a) SGD, λ = 0

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(b) SGD, λ = 0.1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(c) SGD, λ = 1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(d) Noise Injection, λ = 1

Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18

Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(a) SGD, λ = 0

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(b) SGD, λ = 0.1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(c) SGD, λ = 1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(d) Noise Injection, λ = 1

Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18

Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(a) SGD, λ = 0

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(b) SGD, λ = 0.1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(c) SGD, λ = 1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(d) Noise Injection, λ = 1

Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18

Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(a) SGD, λ = 0

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(b) SGD, λ = 0.1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(c) SGD, λ = 1

102 103 104 105

Number of steps

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

a2 + ab + b2

Training

Validation

(d) Noise Injection, λ = 1

Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18

Outline

Derivation of a Hessian measure relating to generalization

Main results

Numerical results

An algorithm to find flat minima

Hessian-based regularization

Grokking in arithmetic tasks

A use case: Graph neural networks

Setup and results

Numerical comparison

19

Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)

20

Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)

20

Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)

20

Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)

20

Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)

20

Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

• Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]

• Graph isomorphism networks (GIN) [XHL+19]

Table 1: Illustration of the dependence on graph structure of existing results. A:

adjacency matrix, D: degree-diagonal matrix of A, l : depth of GNN

Graph Dependence GCN MPNN GIN GraphSAGE

Garg et al. [GJJ20] d l−1 d l−1 - -

Liao et al. [LUZ21] d
l−1
2 d l−1 - -

Ours [JLS+23] 1 ∥A∥l−1
2

∑l−1
i=1

∥A∥i2
l−1

∥∥D−1A
∥∥l−1

2

Takeaway: Existing results scale with maximum degree d , whereas we reduce

this to spectral norm of PG (provably ≤ d—spectral graph theory!)

21

Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

• Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]

• Graph isomorphism networks (GIN) [XHL+19]

Table 1: Illustration of the dependence on graph structure of existing results. A:

adjacency matrix, D: degree-diagonal matrix of A, l : depth of GNN

Graph Dependence GCN MPNN GIN GraphSAGE

Garg et al. [GJJ20] d l−1 d l−1 - -

Liao et al. [LUZ21] d
l−1
2 d l−1 - -

Ours [JLS+23] 1 ∥A∥l−1
2

∑l−1
i=1

∥A∥i2
l−1

∥∥D−1A
∥∥l−1

2

Takeaway: Existing results scale with maximum degree d , whereas we reduce

this to spectral norm of PG (provably ≤ d—spectral graph theory!)

21

Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

• Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]

• Graph isomorphism networks (GIN) [XHL+19]

Table 1: Illustration of the dependence on graph structure of existing results. A:

adjacency matrix, D: degree-diagonal matrix of A, l : depth of GNN

Graph Dependence GCN MPNN GIN GraphSAGE

Garg et al. [GJJ20] d l−1 d l−1 - -

Liao et al. [LUZ21] d
l−1
2 d l−1 - -

Ours [JLS+23] 1 ∥A∥l−1
2

∑l−1
i=1

∥A∥i2
l−1

∥∥D−1A
∥∥l−1

2

Takeaway: Existing results scale with maximum degree d , whereas we reduce

this to spectral norm of PG (provably ≤ d—spectral graph theory!)

21

Illustration of graph statistics

Comparison on five social networks from SNAP

IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-M

20

23

26

29

212
Max Degree of G

Spectral Norm of A

Spectral Norm of D̃−
1
2ÃD̃−

1
2

22

A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V |)

f (X ,G) =
1

n
1⊤
n PGXW

(1)

Thus, the Euclidean norm of f (X ,G) is less than

∥f (X ,G)∥ =

∥∥∥∥1n1⊤
n PGXW

(1)

∥∥∥∥
≤
∥∥∥∥1n1⊤

n

∥∥∥∥
2

· ∥PG ∥2 · ∥X∥2 ·
∥∥∥W (1)

∥∥∥ := C

Provided that the loss function ℓ(·, y) is Lipschitz-continuous, given N samples,

we know

L(f)− L̂(f) ≲

√
C

N

23

A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V |)

f (X ,G) =
1

n
1⊤
n PGXW

(1)

Thus, the Euclidean norm of f (X ,G) is less than

∥f (X ,G)∥ =

∥∥∥∥1n1⊤
n PGXW

(1)

∥∥∥∥
≤
∥∥∥∥1n1⊤

n

∥∥∥∥
2

· ∥PG ∥2 · ∥X∥2 ·
∥∥∥W (1)

∥∥∥ := C

Provided that the loss function ℓ(·, y) is Lipschitz-continuous, given N samples,

we know

L(f)− L̂(f) ≲

√
C

N

23

A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V |)

f (X ,G) =
1

n
1⊤
n PGXW

(1)

Thus, the Euclidean norm of f (X ,G) is less than

∥f (X ,G)∥ =

∥∥∥∥1n1⊤
n PGXW

(1)

∥∥∥∥
≤
∥∥∥∥1n1⊤

n

∥∥∥∥
2

· ∥PG ∥2 · ∥X∥2 ·
∥∥∥W (1)

∥∥∥ := C

Provided that the loss function ℓ(·, y) is Lipschitz-continuous, given N samples,

we know

L(f)− L̂(f) ≲

√
C

N

23

Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f) ≤ (1 + ϵ)L̂(f) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(12)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]

24

Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f) ≤ (1 + ϵ)L̂(f) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(12)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]

24

Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f) ≤ (1 + ϵ)L̂(f) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(12)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]

24

Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f) ≤ (1 + ϵ)L̂(f) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(12)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]

24

Numerical comparisons

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

Garg et al.

Liao et al.

Our Result

(a) Two-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(b) Four-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(c) Six-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

Garg et al.

Liao et al.

Our Result

(d) Two-layer MPNN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(e) Four-layer MPNN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(f) Six-layer MPNN

Figure 5: Comparing our result and prior results Garg et al. [GJJ20] and Liao et al.

[LUZ21] on three graph classification tasks conducted on GCNs and MPNNs

25

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!

26

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019). “Fine-grained

analysis of optimization and generalization for overparameterized

two-layer neural networks”. In: International Conference on Machine Learning.

PMLR, pp. 322–332 (8–13).

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). “Stronger

generalization bounds for deep nets via a compression approach”. In:

International Conference on Machine Learning. PMLR, pp. 254–263 (8–13, 27,

28).

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017).

“Spectrally-normalized margin bounds for neural networks”. In:

Advances in neural information processing systems 30 (8–17).

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2020). “Benign

overfitting in linear regression”. In: Proceedings of the National Academy of

Sciences 117.48, pp. 30063–30070 (8–13).

Becker, S., Le Cun, Y., et al. (1988). “Improving the convergence of

back-propagation learning with second order methods”. In: Proceedings

of the 1988 connectionist models summer school, pp. 29–37 (67–72).

26

Catoni, O. (2007). “PAC-Bayesian supervised classification: the

thermodynamics of statistical learning”. In: arXiv preprint arXiv:0712.0248 (

23–26).

Garg, V., Jegelka, S., and Jaakkola, T. (2020). “Generalization and

representational limits of graph neural networks”. In: ICML (55–57, 66).

Golowich, N., Rakhlin, A., and Shamir, O. (2018). “Size-independent

sample complexity of neural networks”. In: Conference On Learning Theory.

PMLR, pp. 297–299 (62–65).

Hamilton, W., Ying, Z., and Leskovec, J. (2017). “Inductive

representation learning on large graphs”. In: NeurIPS (55–57).

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.,

et al. (2022). “LoRA: Low-Rank Adaptation of Large Language

Models”. In: International Conference on Learning Representations (8–13).

Ju, H., Li, D., Sharma, A., and Zhang, H. R. (2023). “Generalization in

graph neural networks: Improved pac-bayesian bounds on graph

diffusion”. In: International Conference on Artificial Intelligence and Statistics.

PMLR, pp. 6314–6341 (55–57, 62–65).

26

Ju, H., Li, D., and Zhang, H. R. (2022). “Robust fine-tuning of deep

neural networks with hessian-based generalization guarantees”. In:

International Conference on Machine Learning. PMLR, pp. 10431–10461 (8–13).

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and

Tang, P. T. P. (2017). “On large-batch training for deep learning:

Generalization gap and sharp minima”. In: ICLR (18).

Kipf, T. N. and Welling, M. (2017). “Semi-supervised classification with

graph convolutional networks”. In: ICLR (55–57).

Li, Y., Ma, T., and Zhang, H. (2018). “Algorithmic Regularization in

Over-parameterized Matrix Sensing and Neural Networks with

Quadratic Activations”. In: Conference On Learning Theory (8–13).

Liao, R., Urtasun, R., and Zemel, R. (2021). “A PAC-Bayesian Approach

to Generalization Bounds for Graph Neural Networks”. In: ICLR (55–57,

66).

Lotfi, S., Finzi, M., Kapoor, S., Potapczynski, A., Goldblum, M., and

Wilson, A. G. (2022). “PAC-Bayes compression bounds so tight that

they can explain generalization”. In: Advances in Neural Information

Processing Systems 35, pp. 31459–31473 (38).

26

McAllester, D. (2013). “A PAC-Bayesian tutorial with a dropout

bound”. In: arXiv preprint arXiv:1307.2118 (23–26).

Nagarajan, V. and Kolter, J. Z. (2019). “Uniform convergence may be

unable to explain generalization in deep learning”. In: Advances in Neural

Information Processing Systems 32 (22).

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. (2022).

“Grokking: Generalization beyond overfitting on small algorithmic

datasets”. In: arXiv preprint arXiv:2201.02177 (44–48).

Sur, P. and Candès, E. J. (2019). “A modern maximum-likelihood

theory for high-dimensional logistic regression”. In: Proceedings of the

National Academy of Sciences 116.29, pp. 14516–14525 (8–13).

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). “How powerful are

graph neural networks?” In: ICLR (55–57).

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021).

“Understanding deep learning (still) requires rethinking

generalization”. In: Communications of the ACM 64.3, pp. 107–115 (6).

26

Zhang, H. R., Li, D., and Ju, H. (2024). “Noise Stability Optimization

for Finding Flat Minima: A Hessian-based Regularization Approach”.

In: Transactions on Machine Learning Research (34, 35, 42, 43).

26

	Derivation of a Hessian measure relating to generalization
	Main results
	Numerical results

	An algorithm to find flat minima
	Hessian-based regularization
	Grokking in arithmetic tasks

	A use case: Graph neural networks
	Setup and results
	Numerical comparison

	References

