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Problem

Towards better understanding why machine learning models generalize well

Mathematical setup

• Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW ) =
1

n

n∑
i=1

ℓ(fW (xi ), yi )

• Test: expected risk over a random sample of D

L(fW ) = E
(x,y)∼D

[ℓ(fW (x), y)]

• Generalization gap: How should we think about L(fW )− L̂(fW )?
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Motivation back in 2017: Generalization in over-parameterized models

Modern deep networks (e.g., ResNet, BERT) have more parameters than data

labels to memorize training data [ZBH+21]
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Motivation now in 2024: Generalization of NLP models
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Prior work

• Generalization bounds: given a hypothesis space of neural nets H, what is

the worst-case generalization gap over H?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]

• Convergence of SGD for minimizing nonconvex functions

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space (now LoRA

[HWA+22])

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]
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A flavor of the existing results

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl ]

• D: An unknown distribution over feature space X × Y

Norm Bounds for Deep Networks

• Hypothesis space

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• Bartlett et al. [BFT17]: For any l-layer deep net fW whose weight matrices

W belong to H,

L(fW )− L̂(fW ) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• Grows exponentially w/ depth! Tight in the worst-case
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Today’s talk

Central thesis: Geometry of loss landscapes affects generalization [KMN+17]

Derivation of a Hessian measure relating to generalization

Main results

Numerical results

An algorithm to find flat minima

Hessian-based regularization

Grokking in arithmetic tasks

A use case: Graph neural networks

Setup and results

Numerical comparison
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Feedforward neural networks

Forward pass over an l layer network with weight matrices W1,W2, . . . ,Wl :

fW (x) = σl

(
. . . σ3

(
W3σ2

(
W2σ1(W1x)

)))

• Supervised learning: Train weights from random initialization

• Transfer learning: Adapt weights from pretrained/foundations models

(fine-tuning)
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Factor #1: Measuring distance from initialization

Nagarajan and Kolter [NK19]: The distance between the initialization and the

model can affect generalization—This corresponds to the norm of the

hypothesis space

2 4 6 8 10 12 14 16
Number of layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
to

p
re

-t
ra

in
ed

m
od

el
(`

2
)

Stanford-Dogs

Caltech-256

Stanford-Cars

CUB-200-2011

MIT-Indoor

Aircrafts

Flowers

8



Proof machinery: PAC-Bayes bound

Theorem [McA13]

• P = N (W (0), σ2 Id): prior distribution centered at the initialization

weights

• Q = N (W (T ), σ2 Id): posterior distribution centered at the trained weights

at epoch T

• With probability at least 1− δ for any δ ∈ (0, 1)

E
W∼Q

[L(fW )] ≤ E
W∼Q

[
L̂(fW )

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

Theorem [Cat07]

• For any β ∈ (0, 1), with probability at least 1− δ

E
W∼Q

[L(fW )] ≤ 1

β
E

W∼Q

[
L̂(fW )

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)
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Claim #1: Relating noise stability to trace of the Hessian

Claim 1: Noise stability

Measure model stability after adding perturbations to weight parameters

[AGN+18]: Let ℓQ(fW ) = EU [ℓ(fW+U)]. We have∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
σ2 Tr

[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ
3 (4)
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Figure 1: Illustration of the Hessian approximation. We report all measurements from

the last epoch of fine-tuning. σ: standard deviation of the Gaussian noise injected into

the weight matrices. σ decides the strength of regularization on the Hessian trace.
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Claim #2: Uniform convergence of the Hessian operator

Claim 2: Uniform convergence

Since the Hessian operator is Lipschitz continuous, we can show that the

trace of the Hessian satisfies the uniform convergence

11



Derivation of a Hessian measure

Proof sketch: start from PAC-Bayes bound

LQ(W ) ≤ 1

β
L̂Q(W ) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

C is a bound on the loss function. By Claim 1,

LQ(W ) = L(W ) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W ) = L̂(W ) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi ), yi )

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n−1/2)

By plugging in these results back to PAC-Bayes bound (5), we get:

L(W ) ≤ 1

β
L̂(W ) +

σ2(1− β)α

2β
+

Cr 2/2σ2

2β(1− β)n
+ O

(
σ3 +

σ2√p
√
n

+
log(δ−1)

n

)
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Statement of results

Fact: KL(Q||P) ≤ r2

2σ2 , where r is radius of hypothesis space H

By choosing σ2 and β carefully, we obtain

Theorem 1 [ZLJ24]

Assume: ℓ is bounded between 0 and C , ℓ(fW (·), ·) is twice-differentiable and

∇2[ℓ(fW (·), ·)] is Lipschitz continuous. Suppose for any W in H, the trace

norm is less than α:

α := max
W∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
, (8)

and the ℓ2-norm of W is at most r for any W ∈ H. Then, for any W in H,

with probability at least 1− δ for any δ > 0, the following must hold:

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)

√
Cαr 2

n
+ O

(
n− 3

4 log(δ−1)
)
. (9)
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Numerical results

Does Hessian-based measures correlate well with empirical measurements?
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Numerical results

Does Hessian-based measures correlate well with empirical measurements?

• Compare across seven fine-tuning methods: SGD, early stopping, weight

decay, label smoothing, mixup, distance-based regularization,

sharpness-aware minimization
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Figure 2: The Hessian measures accurately correlate with empirical generalization

errors for seven fine-tuning methods.
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Numerical results

Does Hessian-based measures correlate well with empirical measurements?

Concurrent findings also at Lotfi et al. [LFK+22]
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Outline

Derivation of a Hessian measure relating to generalization

Main results

Numerical results

An algorithm to find flat minima

Hessian-based regularization

Grokking in arithmetic tasks

A use case: Graph neural networks

Setup and results

Numerical comparison
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Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could minimize

ℓQ = EU [ℓ(fW+U)] instead
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Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could minimize

ℓQ = EU [ℓ(fW+U)] instead

By Claim 1 (equation (4)), this regularizes the trace of the Hessian of the loss

surface

𝑾𝒊	
𝑼𝒊 −𝑼𝒊

∇𝑓(𝑊" + 𝑈")

∇𝑓(𝑊" − 𝑈")

𝑾𝒊#𝟏
𝐍𝐒𝐎	

Figure 2: An illustration of one update step in our algorithm
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Experimental results I

Comparison between SGD, naive noise injection (directly add noise before

computing gradient, i.e., WP-SGD), and our algorithm (NSO)
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Experimental results II

Grokking: A phenomenon of delayed generalization observed with training

small arithmetic datasets [PBE+22]
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Figure 4: Training behavior with different weight decay (denoted as λ) and Hessian

regularization (modulo 97).

Summary of our findings

• Fig. 4a: No weight decay; stable, but validation acc does not reach 100%

• Fig. 4b: Small weight decay; fluctuations, and validation acc does not

reach 100%

• Fig. 4c: High weight decay; significant fluctuations, grokking is strong

• Fig. 4c: High weight decay plus noise injection to regularize Hessian;

stable, strong grokking 18
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Message-passing neural networks

Motivation: Graph neural networks are one type of neural networks designed

for working with graph-structured data

Notations:

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : X is the feature matrix

• Graph-level prediction: a label y ∈ Y for each graph G

Setup: Message passing with graph diffusion matrix PG

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (10)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (11)
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Summary of existing results

How does the generalization bound of GNNs scale with graph structures?

• Graph convolutional networks (GCN) [KW17] and GraphSAGE [HYL17]

• Graph isomorphism networks (GIN) [XHL+19]

Table 1: Illustration of the dependence on graph structure of existing results. A:

adjacency matrix, D: degree-diagonal matrix of A, l : depth of GNN

Graph Dependence GCN MPNN GIN GraphSAGE

Garg et al. [GJJ20] d l−1 d l−1 - -

Liao et al. [LUZ21] d
l−1
2 d l−1 - -

Ours [JLS+23] 1 ∥A∥l−1
2

∑l−1
i=1

∥A∥i2
l−1

∥∥D−1A
∥∥l−1

2

Takeaway: Existing results scale with maximum degree d , whereas we reduce

this to spectral norm of PG (provably ≤ d—spectral graph theory!)
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Illustration of graph statistics

Comparison on five social networks from SNAP

IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-M

20

23

26

29

212
Max Degree of G

Spectral Norm of A

Spectral Norm of D̃−
1
2ÃD̃−

1
2
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A toy example

One-layer linear GNN with average pooling of node embeddings (n = |V |)

f (X ,G) =
1

n
1⊤
n PGXW

(1)

Thus, the Euclidean norm of f (X ,G) is less than

∥f (X ,G)∥ =

∥∥∥∥1n1⊤
n PGXW

(1)

∥∥∥∥
≤
∥∥∥∥1n1⊤

n

∥∥∥∥
2

· ∥PG ∥2 · ∥X∥2 ·
∥∥∥W (1)

∥∥∥ := C

Provided that the loss function ℓ(·, y) is Lipschitz-continuous, given N samples,

we know

L(f )− L̂(f ) ≲

√
C

N
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Our results

Generalization bounds for MPNN (informal) [JLS+23]

Suppose: activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f ) ≤ (1 + ϵ)L̂(f ) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(12)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Key step: bound the trace of the Hessian recursively for each layer

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]
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Numerical comparisons

IMDB-B IMDB-M COLLAB
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(a) Two-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(b) Four-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027
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(d) Two-layer MPNN
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Figure 5: Comparing our result and prior results Garg et al. [GJJ20] and Liao et al.

[LUZ21] on three graph classification tasks conducted on GCNs and MPNNs
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Summary

The use of Hessian to study neural networks dates back to early work by Yann

LeCun in the 1990s through the development of second-order methods [BL+88]

This work: revisit this Hessian view to measure the generalization of neural

networks

• Can be used to explain a variety of phenomenon observed with neural

network training, including grokking

• Provides a new approach to prove generalization bounds for GNNs by

examining the Hessian

Open questions:

• Known sample complexity for GNN only works for graph-level prediction,

how about a framework for node-level prediction?

• Better understand the structure of Hessian? Might also require faster

algorithms to perform Hessian related computation

Thank you for listening!
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