
Supervised Machine Learning and
Learning Theory

Lecture 14: The backpropagation algorithm

October 22, 2024

Warm-up questions
• What are the basic building blocks of neural network?

• Can you name two different neural network architectures?

• For an intermediate layer with width 𝑟 (neurons), how many trainable
parameters are associated with this layer?

• For a digit with label 𝑦 and a softmax output vector from the neural
network 𝑢 = [𝑢!, 𝑢", … , 𝑢#], what is the cross-entropy loss of a neural
network 𝑓 for this input?

Lecture plan
• Computing the gradient using numpy

Review: Using neural networks for regression and classification
• Neural networks can be used to solve regression and classification problems
• A toy data setting for training a neural network in PyTorch
• We will use a linear classifier, then a nonlinear classifier, and compare their results

Review: Generating data
• Generate a two-dimensional dataset with nonlinear decision boundaries

Review: Initialization
• Initialization: Every entry of 𝑊 (classifier parameters) is drawn from a

standard Gaussian with mean zero and variance one
• 𝐷: input dimension, 𝐾: number of classes

Review: Matrix multiplication
• 𝑋: dimension 300×2
• 𝑊: dimension 2×3
• 𝑏: dimension 1×3

Loss function
• Training loss: Averaged cross-entropy loss plus an ℓ$ penalty

• Averaged cross-entropy loss (average over training dataset)
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝐾}, let 𝑢 be this vector

• ℓ 𝑢 = −log !"#(%!)
∑"#$
% !"#(%")

 (Fact: ℓ 𝑢 ≥ 0)

• ℓ𝟐 penalty: Sum of squared values of 𝑊 and 𝑏

• Final loss function:
1
𝑛
4
&

'

ℓ 𝑓 𝑥& , 𝑦& +
𝛼
2

𝑊 (
$ + 𝑏 $

Compute in numpy

Compute gradient in numpy
• Output for label 𝑘: 𝑢) , cross-entropy loss ℓ(𝑊, 𝑏)
• Chain rule: (ℓ(*,,)(* = ∑-./0 ∑1

(ℓ
(%&

(%&
(*

• Claims (softmax probability for label 𝑘: 𝑝1)
𝜕ℓ
𝜕𝑢!

= 𝑝! − 1"#!
𝜕𝑢
𝜕𝑊 = 𝑋$

Gradient on bias adds up
all the log probabilities

Explaining weight decay
• Gradient of ℓ$ penalty

𝛼
2
∇ 𝑊 2

3 = 𝛼𝑊

• Weight decay with learning rate 𝜂
𝑊 − 𝜂 ⋅ 𝛼𝑊 = 1 − 𝜂𝛼 𝑊

Training loss

This is quite high
for three classes:
− log /4 = 1.10

Use nonlinear classifiers
• First trainable layer: weight matrix 𝑊" ∈ ℝ*×, , bias 𝑏" ∈ ℝ,

• Activation function
• A second trainable layer: weight matrix 𝑊$ ∈ ℝ,×- , bias 𝑏$ ∈ ℝ-

Forward pass in the two-layer neural network
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

𝑢 = 𝜎 𝑋𝑊" + 1 ⋅ 𝑏" 𝑊$ + 1 ⋅ 𝑏$

Gradient of the second layer
• Gradient of the second layer: Similar to the linear case
• Treat the hidden layer output as input

Gradient of the first layer
• Gradient of the first layer: Use chain rule

Gradient of the first layer

• Let ℎ = 𝜎(𝑋𝑊" + 1 ⋅ 𝑏")
• (ℓ
(5
= (ℓ

(%
⋅ (%
(5

• Recall 𝑢 = 𝜎 𝑋𝑊/ + 1 ⋅ 𝑏/ 𝑊3 + 1 ⋅ 𝑏3 =
ℎ𝑊3 + 1 ⋅ 𝑏3

• Use chain rule to get .ℓ
.0!

= .ℓ
.,
⋅ .,
.0!

• (5
(*$

	: get the derivative of the activation, then
the derivative ℎ of 𝑊/

• 𝑑𝑏/ =
(ℓ
(,$

 is similar

Results

Lecture plan
• How backpropagation works

Overview
• Backpropagation algorithm is the workhorse of modern deep networks
• Both PyTorch and TensorFlow implement the backpropagation

Training loss objective
• Train parameters 𝑊", 𝑏",𝑊$, 𝑏$ to minimize the cross-entropy loss
• Minimize the cross-entropy loss as the training objective

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01,
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Loss value: − log !.#
$
= 0.046

The gradient of each layer
• Suppose 𝑥 is a data point with label 𝑦: Let ℓ(𝑥, 𝑦) be the loss of
• The output of the backpropagation algorithm will be
• Gradient of ℓ with respect to 𝑊/, 𝑏/ (layer 1)
• Gradient of ℓ with respect to 𝑊3, 𝑏3 (layer 2)
• …
• Gradient of ℓ with respect to 𝑊?, 𝑏? (layer 𝐿)

How backpropagation works
• Backpropagation consists of two steps
• Step 1: Use forward pass to compute the input to every layer and the output of every

layer

• Step 2: Use backward pass to compute the gradient

• In total, we need to run two passes over the entire neural network to conduct this
computation!

Forward pass
• Input: 𝑜! = 𝑥
• For 𝑖	 = 	1, 2, … , 𝐿
• Input to layer 𝑖: 𝑧- = 𝑜-@/𝑊- + 𝑏-
• Output of layer 𝑖: 𝑜- = 𝜎-(𝑧-)

• Return 𝑜1

• Important takeaway
• Input to layer 𝑖: 𝑧-
• Output of layer 𝑖: 𝑜-

The backward pass
• Setup
• Loss function ℓ
• 𝑖-th trainable layer: weight matrix 𝑊- ∈ ℝA"'$×A" , bias 𝑏- ∈ ℝA"
• Activation function: 𝜎-: ℝ → ℝ

• Output: .ℓ
.0"

 and .ℓ
.2"

 for all 𝑖 = 1,2, … , 𝐿

Simplified example: One dimension
• A two-layer linear network with mean squared loss

ℓ 𝑥, 𝑦 = 𝑤$𝑤"𝑥 − 𝑦 $

• Claims
𝜕ℓ
𝜕𝑤3

= 2 𝑤3𝑤/𝑥 − 𝑦 𝑤/𝑥

𝜕ℓ
𝜕𝑤/

= 2 𝑤3𝑤/𝑥 − 𝑦 𝑤3𝑥

With nonlinear activation
• Nonlinear activation

ℓ 𝑥, 𝑦 = 𝑤$𝜎"(𝑤"𝑥) − 𝑦 $

• Claims
𝜕ℓ
𝜕𝑤3

= 2 𝑤3𝜎/ 𝑤/𝑥 − 𝑦 𝜎/ 𝑤/𝑥

𝜕ℓ
𝜕𝑤/

= 2 𝑤3𝜎 𝑤/𝑥 − 𝑦 𝑤3𝜎/C 𝑤/𝑥 𝑥

• Compare with the previous example, we have an additional term which is
𝜎"′(𝑤"𝑥)

Multi-layer linear network
• A multi-layer linear network with squared loss

ℓ 𝑥, 𝑦 = 𝑤1𝑤13"…𝑤"𝑥 − 𝑦 $

• Claims
• (ℓ
(D(

= 2 𝑤?𝑤?@/…𝑤/𝑥 − 𝑦 𝑤?@/…𝑤/𝑥

• (ℓ
(D('$

= 2 𝑤?𝑤?@/…𝑤/𝑥 − 𝑦 𝑤?𝑤?@3…𝑤/𝑥

• …

• (ℓ
(D$

= 2 𝑤?𝑤?@/…𝑤/𝑥 − 𝑦 𝑤?𝑤?@/…𝑤3𝑥

Looking at an intermediate layer
• Illustration

Multi-layer linear network (simplified)
• Input to layer 𝑖: 𝑧& = 𝑤&3"𝑤&3$…𝑤"𝑥
• Output of layer 𝑖: 𝑜& = 𝑤&𝑤&3"…𝑤"𝑥 (assume bias at layer 𝑖 is equal to zero)
• Loss ℓ: squared loss

𝜕ℓ
𝜕𝑤?

= 2 𝑤?𝑤?@/…𝑤/𝑥 − 𝑦 𝑤?@/…𝑤/𝑥 = 2 𝑧?𝑤? − 𝑦 𝑧?

• ℓ(𝑥, 𝑦) = 𝑧?𝑤? − 𝑦 3

• Thus, (ℓ
(D(

= 2 𝑧?𝑤? − 𝑦 𝑧?, and (ℓ
(E(

= 2 𝑧?𝑤? − 𝑦 𝑤?

• What about (ℓ
(D('$

?

• Notice that 𝑧? = 𝑤?@/𝑜?@/: (ℓ
(D('$

= (ℓ
(E(

⋅ (E(
(D('$

= (ℓ
(E(

⋅ 𝑜?@/

Multi-layer linear network (simplified)
• For any 𝑖

𝜕ℓ
𝜕𝑤-

=
𝜕ℓ
𝜕𝑧-F/

⋅
𝜕𝑧-F/
𝜕𝑤-

=
𝜕ℓ
𝜕𝑧-F/

⋅ 𝑜-

• Input to layer 𝑖 + 1: 𝑧-F/ = 𝑤-𝑜-;
(E")$
(D"

= 𝑜-
𝜕ℓ
𝜕𝑧-F/

=
𝜕ℓ
𝜕𝑧-

⋅
𝜕𝑧-F/
𝜕𝑧-

=
𝜕ℓ
𝜕𝑧-

⋅ 𝑤-

• Notice that 𝑧-F/ = 𝑤-𝑧-, recall activation is linear

• Thus, (E")$(E"
= 𝑤-

With nonlinear activation
𝑧&4" = 𝑤&𝑜& = 𝑤&𝜎(𝑧&)

• In this case, we instead have .5"#!
.5"

= 𝑤&𝜎′(𝑧&)

• The rest of the calculation remains the same
• The other caveat is that in this example, we focused on one-dimensional

input. For multi-dimensional input, the idea is the same, although the
computation is hairier

Summary
• To wrap up, we have shown how to derive backward pass for a multi-

layer, nonlinear neural network with mean squared loss
• For cross-entropy loss, the steps are the same except that the gradient of

the loss is more complicated

• Key idea:
• Store intermediate input, output at each layer
• Use chain rule to backprop the gradient all the way from the output layer to the

input layer

Summary: The backward pass
• Write .ℓ

.6"
 and .ℓ

.2"
 based on .ℓ

.6"#!
 and .ℓ

.2"#!
• Decompose the gradient at this layer back to the gradient of the previous layer

• Find the gradient at every layer by going backward from the final output layer
• Find out (ℓ

(D(
 and (ℓ

(,(

• Find out (ℓ
(D('$

 and (ℓ
(,('$

• …

• Find out (ℓ
(D$

 and (ℓ(,$

Announcements
• Project document guideline:

https://docs.google.com/document/d/1EmhNv4yWqkrABGb_BMmw
vphdPk9LI61mgHsmzO2T1Lk/edit?usp=sharing

• Khoury MS apprenticeship nominations: at most five nominations (first
come first serve), two spots remaining

https://docs.google.com/document/d/1EmhNv4yWqkrABGb_BMmwvphdPk9LI61mgHsmzO2T1Lk/edit?usp=sharing
https://docs.google.com/document/d/1EmhNv4yWqkrABGb_BMmwvphdPk9LI61mgHsmzO2T1Lk/edit?usp=sharing

