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Review: Implementation in PyTorch
• Loading dependencies



Review: Loading dataset



Review: Visualization



Review: Defining network architecture

1st convolution

2nd convolution

Fully-connected layer

Forward pass (in a couple of  slides)



Review: Defining network architecture

Number of  in-channels: This is one for MNIST, since the image is black-white

Number of  out-channels: This is the number of  filters at this layer



Review: Training procedure

PyTorch implementation of  SGD 
(will elaborate in today’s lecture)



Review: Test accuracy



Review: Training and test loss curves



Lecture plan
• The forward pass



A single input
• Forward pass: compute the output of  a neural network given an input

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Loss: − log !.#
$
= 0.045

How do we get this output?



Forward pass: A single input
• Notations
• Input: vector 𝑥 ∈ ℝ*!  (e.g., 𝑑+ = 784)
• First trainable layer: weight matrix 𝑤, ∈ ℝ*!×*"  (e.g., 𝑑, = 100), bias 𝑏, ∈ ℝ*"
• Activation function: 𝜎:ℝ → ℝ
• Second trainable layer: weight matrix 𝑤. ∈ ℝ*"×*#  (e.g., 𝑑. = 100), bias 𝑏. ∈ ℝ*#



Illustration of  forward pass
• First, apply matrix multiplication to get the input to the hidden layer: 
𝑥!𝑤", of  size 1×𝑑"



Illustration of  forward pass
• Next, apply an activation function
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), where 𝜎 ⋅  is applied entrywise to every 

coordinate of  the input, size 1×𝑑,



Illustration of  forward pass
• Next, apply matrix multiplication again
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 1×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 1×𝑑.



Illustration of  forward pass
• Finally, apply softmax to get the probability distribution over ten output 

categories
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 1×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 1×𝑑.
• Final output: softmax(𝜎 𝑥/𝑤, 𝑤.)

Softmax output [0.01, 0.9, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]



Applying forward pass to a batch of  inputs
• Repeat the steps again using matrix multiplication
• Input: matrix 𝑥 ∈ ℝ0×*!  (e.g., 𝐵 = 128, 𝑑+ = 784)
• First trainable layer → activation function → second trainable layer

Softmax [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.02, 0.01, 0.01]

Softmax [0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01, 0.01, 0.01]



Applying forward pass to a batch of  inputs
• Intermediate outputs
• Input: 𝑥
• Input to the hidden layer: 𝑥/𝑤,, size 𝐵×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 𝐵×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 𝐵×𝑑.
• Final output: softmax(𝜎 𝑥/𝑤, 𝑤.)



Multiple layers
• Apply matrix multiplication followed by an activation function multiple times
• Input: matrix 𝑥 ∈ ℝ*!×0 (e.g., 𝐵 = 128, 𝑑+ = 784)
• First trainable layer: weight matrix 𝑤, ∈ ℝ*!×*" , bias 𝑏, ∈ ℝ*"
• Activation function: 𝜎,: ℝ → ℝ
• …
• 𝑖-th trainable layer: weight matrix 𝑤1 ∈ ℝ*$%"×*$ , bias 𝑏1 ∈ ℝ*$
• Activation function: 𝜎1: ℝ → ℝ
• …



Pseudocode for forward pass
• Input: 𝑜# = 𝑥!

• For 𝑖	 = 	1, 2, … , 𝐿
• Input to layer 𝑖: 𝑧1 = 𝑜12,𝑤1 + 𝑏1
• Output of  layer 𝑖: 𝑜1 = 𝜎1(𝑧1)

• Return 𝑜$



Lecture plan
• PyTorch implementation of  stochastic gradient descent



Running example in PyTorch
• Calculate gradient via backpropagation (an efficient algorithm to compute 

the gradient---we’ll cover this topic next lecture)



Running example in PyTorch
• Update the weights: Based on a learning rate parameter, we apply 

stochastic gradient descent



Running example in PyTorch
• Stochastic gradient descent wrapped up in pytorch codes



Lecture plan
• PyTorch implementation of  linear/nonlinear classifiers



Using neural networks for regression and classification
• Neural networks can be used to solve regression and classification problems

• We will consider a toy data setting for training a neural network in PyTorch

• We will use a linear classifier, then a nonlinear classifier, and compare their 
results



Generating data
• Generate a two-dimensional dataset with nonlinear decision boundaries



Visualization



Initialization
• Initialization: Every entry of  𝑊 is drawn from a standard Gaussian with 

mean zero and variance one
• 𝐷: input dimension
• 𝐾: number of  classes
• 𝑊: classifier parameters



Matrix multiplication
• 𝑋: dimension 300×2
• 𝑊: dimension 2×3
• 𝑏: dimension 1×3

Adds 𝑏 into every row of  𝑋	@	𝑊 (means matrix multiplication in numpy)



Loss function
• Training loss: Averaged cross-entropy loss plus an ℓ% penalty

• Averaged cross-entropy loss (average over training dataset)
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝐾}, let 𝑢 be this vector

• ℓ 𝑢 = −log 89:(<&)
∑$'"
( 89:(<$)

 (Fact: ℓ 𝑢 ≥ 0)

• ℓ𝟐 penalty: Sum of  squared values of  𝑊 and 𝑏



Cross-entropy loss



ℓ! penalty



Compute gradient
• Notations
• 𝑢?: output for label 𝑘
• 𝑝?: softmax probability for label 𝑘
• ℓ(𝑊, 𝑏): cross-entropy loss

• Chain rule: 'ℓ(*,,)
'*

= 'ℓ
'.
⋅ '.
'*

 (next lecture)

• Claim: 'ℓ
'.!

= 𝑝/ − 101/ , '.
'*

= 𝑋! (next lecture)

Gradient on bias adds up
all the log probabilities



Compute the gradient
• Gradient of  ℓ% penalty (weight decay)



Trainng loss

This is quite high 
for three classes: 
− log ,@ = 1.10



Can we do better?
• First trainable layer: weight matrix 𝑤" ∈ ℝ2×4 , bias 𝑏" ∈ ℝ4

• Add activation function: 𝜎:ℝ → ℝ
• Add a second trainable layer: weight matrix 𝑤% ∈ ℝ4×5 , bias 𝑏% ∈ ℝ5



Compute output
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

𝑢 = 𝜎 𝑋𝑊" + 1 ⋅ 𝑏" 𝑊% + 1 ⋅ 𝑏%



Compute gradient
• Gradient of  the second layer: Similar to the linear layer case since it is 

only for the cross-entropy loss. Treat the hidden layer output as input
• Gradient of  the first layer



Training results
• Comparing loss between linear classifier (left) and ReLU classifier (right)



Visualization
• Visualizing decision boundaries



Announcements
• Instructions for the course project will be released this afternoon


