Supervised Machine Learning and Learning Theory

Lecture 13: Implementation of Neural Networks in PyTorch

October 18, 2024

Review: Implementation in PyTorch

• Loading dependencies

Implement a convolutional neural network to recognize handwritten digits

Before you start, make sure to read the problem description in the handout pdf.

Uncomment the below line and run to install required packages if you have not done so

!pip install torch torchvision matplotlib tqdm

Setup import torch import matplotlib.pyplot as plt import torchvision from torchvision import datasets, transforms from tqdm import trange %matplotlib inline DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' # Set random seed for reproducibility seed = 1234 # cuDNN uses nondeterministic algorithms, set some options for reproducibility torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.manual_seed(seed)

Review: Loading dataset

Get MNIST Data

The torchvision package provides a wrapper to download MNIST data. The cell below downloads the training and test datasets and creates dataloaders for each.

```
# Initial transform (convert to PyTorch Tensor only)
transform = transforms.Compose([
    transforms.ToTensor(),
])
#torchvision.datasets.MNIST(root=root_dir,download=True)
root_dir = './data'
train_data = datasets.MNIST(root_dir, train=True, download=False, transform=transform)
test_data = datasets.MNIST(root_dir, train=False, download=False, transform=transform)
train_data.transform = transform
test_data.transform = transform
```

Inspect dataset

```
dataiter = iter(train_loader)
images, labels = next(dataiter)
```

```
# Print information and statistics of the first batch of images
print("Images shape: ", images.shape)
print("Labels shape: ", labels.shape)
print(f'Mean={images.mean()}, Std={images.std()}')
```


fig = plt.figure(figsize=(12, 10))
for i in range(20):
 plt.subplot(4, 5, i+1)
 plt.imshow(images[i].squeeze(), cmap='gray', interpolation='none')
 plt.title(f'Label: {labels[i]}', fontsize=14)
 plt.axis('off')

Review: Visualization

SCHEASTIC VITA VITA VITA VITA VITA

Review: Defining network architecture

Implement a two-layer neural network

Write a class that constructs a two-layer neural network as specified in the handout. The class consists of two methods, an initialization that sets up the architecture of the model, and a forward pass function given an input feature.

Review: Defining network architecture

model = CNN().to(DEVICE)

sanity check
print(model)

CNN (

```
(conv1): Sequential( Number of in-channels: This is one for MNIST, since the image is black-white
(0): Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU() Number of out-channels: This is the number of filters at this layer
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc): Linear(in_features=320, out_features=10, bias=True)
(act): ReLU()
```


Review: Training procedure

Implement an optimizer to train the neural net model

Write a method called train_one_epoch that runs one step using the optimizer.

```
def train one epoch(train loader, model, device, optimizer, log interval, epoch):
   model.train()
    losses = []
   counter = []
   for i, (img, label) in enumerate(train_loader):
        img, label = img.to(device), label.to(device)
        # _____
        optimizer.zero grad()
        output = model(img)
        criterion = torch.nn.CrossEntropyLoss()
                                                       PyTorch implementation of SGD
       loss = criterion(output, label)
                                                        (will elaborate in today's lecture)
        loss.backward()
        optimizer.step()
        # Record training loss every log_interval and keep counter of total training images seen
        if (i+1) % log_interval == 0:
            losses.append(loss.item())
```


(i * batch_size) + img.size(0) + epoch * len(train_loader.dataset))

return losses, counter

counter.append(

Review: Test accuracy

```
# Hyperparameters
 lr = 0.001
 max_epochs=10
 gamma = 0.95
 # Recording data
 log_interval = 100
 # Instantiate optimizer (model was created in previous cell)
 optimizer = torch.optim.SGD(model.parameters(), lr=lr)
 # Use for CNN model
 # optimizer = torch.optim.SGD(model.parameters(), lr=lr)
train_losses = []
 train_counter = []
 test_losses = []
test correct = []
 for epoch in trange(max_epochs, leave=True, desc='Epochs'):
     train_loss, counter = train_one_epoch(train_loader, model, DEVICE, optimizer, log_interval, epoch)
     test_loss, num_correct = test_one_epoch(test_loader, model, DEVICE)
     # Record results
     train_losses.extend(train_loss)
     train counter.extend(counter)
     test_losses.append(test_loss)
     test_correct.append(num_correct)
     print(train_loss, test_loss, num_correct)
print(f"Test accuracy: {test_correct[-1]/len(test_loader.dataset)}")
67, 0.7128437161445618, 0.48613211512565613] tensor(0.3032) 8908
                                                                                                                            | 8/10 [01:19<0
 Epochs: 80%
0:19, 9.96s/it]
 [0.4310001730918884, 0.2578464150428772, 0.390159547328949, 0.2206697016954422, 0.3051441013813019, 0.22070705890655518, 0.659205794334411
 6, 0.4572473466396332, 0.41547641158103943] tensor(0.2518) 8995
 Epochs: 90%
                                                                                                                           | 9/10 [01:30<0
 0:10, 10.06s/it]
 [0.6253061890602112, 0.3636443614959717, 0.2863709330558777, 0.3423950672149658, 0.3142278790473938, 0.2135738581418991, 0.291072398424148
 56, 0.47620293498039246, 0.3207015097141266] tensor(0.2235) 9060
 Epochs: 100%|
                                                                                                                            10/10 [01:40<0
 0:00, 10.03s/it]
 [0.32710516452789307, 0.376585990190506, 0.47345957.5999603, 0.47056400775909424, 0.17729906737804413, 0.25048649311065674, 0.188878461718
 55927, 0.30020228028297424, 0.3596789538860321] tensor(0.2127) 9115
Test accuracy: 0.9115
```


Review: Training and test loss curves

• The forward pass

A single input

• Forward pass: compute the output of a neural network given an input

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, **0.9**, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Loss:
$$-\log \frac{0.9}{1} = 0.045$$

How do we get this output?

Forward pass: A single input

• Notations

- Input: vector $x \in \mathbb{R}^{d_0}$ (e.g., $d_0 = 784$)
- First trainable layer: weight matrix $w_1 \in \mathbb{R}^{d_0 \times d_1}$ (e.g., $d_1 = 100$), bias $b_1 \in \mathbb{R}^{d_1}$
- Activation function: $\sigma: \mathbb{R} \to \mathbb{R}$
- Second trainable layer: weight matrix $w_2 \in \mathbb{R}^{d_1 \times d_2}$ (e.g., $d_2 = 100$), bias $b_2 \in \mathbb{R}^{d_2}$

• First, apply matrix multiplication to get the input to the hidden layer: $x^{T}w_{1}$, of size $1 \times d_{1}$

- Next, apply an activation function
 - Input to the hidden layer: $x^{\top}w_1$, size $1 \times d_1$
 - Output of the hidden layer: $\sigma(x^{\top}w_1)$, where $\sigma(\cdot)$ is applied entrywise to every coordinate of the input, size $1 \times d_1$

- Next, apply matrix multiplication again
 - Input to the hidden layer: $x^{\top}w_1$, size $1 \times d_1$
 - Output of the hidden layer: $\sigma(x^{\top}w_1)$, size $1 \times d_1$
 - Input to the output layer: $\sigma(x^{\mathsf{T}}w_1)w_2$, size $1 \times d_2$

- Finally, apply softmax to get the probability distribution over ten output categories
 - Input to the hidden layer: $x^{\top}w_1$, size $1 \times d_1$
 - Output of the hidden layer: $\sigma(x^{\mathsf{T}}w_1)$, size $1 \times d_1$
 - Input to the output layer: $\sigma(x^{\mathsf{T}}w_1)w_2$, size $1 \times d_2$
 - Final output: $\operatorname{softmax}(\sigma(x^{\top}w_1)w_2)$

Softmax output [0.01, **0.9**, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Applying forward pass to a batch of inputs

- Repeat the steps again using matrix multiplication
 - Input: matrix $x \in \mathbb{R}^{B \times d_0}$ (e.g., B = 128, $d_0 = 784$)
 - First trainable layer \rightarrow activation function \rightarrow second trainable layer

Applying forward pass to a batch of inputs

• Intermediate outputs

- Input: *x*
- Input to the hidden layer: $x^{\top}w_1$, size $B \times d_1$
- Output of the hidden layer: $\sigma(x^{\top}w_1)$, size $B \times d_1$
- Input to the output layer: $\sigma(x^{\top}w_1)w_2$, size $B \times d_2$
- Final output: $\operatorname{softmax}(\sigma(x^{\top}w_1)w_2)$

Multiple layers

- Apply matrix multiplication followed by an activation function multiple times
 - Input: matrix $x \in \mathbb{R}^{d_0 \times B}$ (e.g., B = 128, $d_0 = 784$)
 - First trainable layer: weight matrix $w_1 \in \mathbb{R}^{d_0 \times d_1}$, bias $b_1 \in \mathbb{R}^{d_1}$
 - Activation function: $\sigma_1 \colon \mathbb{R} \to \mathbb{R}$
 - ...

• ...

- *i*-th trainable layer: weight matrix $w_i \in \mathbb{R}^{d_{i-1} \times d_i}$, bias $b_i \in \mathbb{R}^{d_i}$
- Activation function: $\sigma_i \colon \mathbb{R} \to \mathbb{R}$

Pseudocode for forward pass

- Input: $o_0 = x^{\mathsf{T}}$
- For i = 1, 2, ..., L
 - Input to layer $i: z_i = o_{i-1}w_i + b_i$
 - Output of layer $i: o_i = \sigma_i(z_i)$
- Return o_L

Lecture plan

• PyTorch implementation of stochastic gradient descent

Running example in PyTorch

• Calculate gradient via *backpropagation* (an efficient algorithm to compute the gradient---we'll cover this topic next lecture)

net.zero_grad() # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

Running example in PyTorch

• Update the weights: Based on a learning rate parameter, we apply stochastic gradient descent

learning_rate = 0.01

for f in net.parameters():
 f.data.sub_(f.grad.data * learning_rate)

Running example in PyTorch

• Stochastic gradient descent wrapped up in pytorch codes

import torch.optim as optim
create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update

Lecture plan

• PyTorch implementation of linear/nonlinear classifiers

Using neural networks for regression and classification

- Neural networks can be used to solve regression and classification problems
- We will consider a toy data setting for training a neural network in PyTorch
- We will use a linear classifier, then a nonlinear classifier, and compare their results

Generating data

• Generate a two-dimensional dataset with nonlinear decision boundaries

generating some data

In [2 : N = 100 # number of points per class D = 2 # dimensionality K = 3 # number of classes X = np.zeros((N*K,D)) # data matrix (each row = single example) y = np.zeros(N*K, dtype='uint8') # class labels for j in range(K): ix = range(N*j.N*(j+1)) r = np.linspace(0.0,1,N) # radius t = np.linspace(0.0,1,N) # radius t = np.linspace(j*4.(j+1)*4.N) + np.random.randn(N)*0.2 # theta X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] y[ix] = j

> # lets visualize the data: plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.show()

Visualization

Initialization

- Initialization: Every entry of W is drawn from a standard Gaussian with mean zero and variance one
 - *D*: input dimension
 - K: number of classes
 - W: classifier parameters

Initialize the parameters

```
In [3]: # initialize parameters randomly
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))
step_size = 1e-0
reg = 1e-3
```


Matrix multiplication

- *X*: dimension 300×2
- *W*: dimension 2×3
- *b*: dimension 1×3

Compute the output

Loss function

- Training loss: Averaged cross-entropy loss plus an ℓ_2 penalty
- Averaged cross-entropy loss (average over training dataset)
 - Given a prediction for every label $y \in \{1, 2, ..., K\}$, let u be this vector

•
$$\ell(u) = -\log \frac{\exp(u_y)}{\sum_{i=1}^{K} \exp(u_i)}$$
 (Fact: $\ell(u) \ge 0$)

• ℓ_2 penalty: Sum of squared values of W and b

Cross-entropy loss

```
num_examples = X.shape[0]
# get unnormalized probabilities
exp_scores = np.exp(scores)
# normalize them for each example
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
correct_logprobs = -np.log(probs[range(num_examples),y])
```


 ℓ_2 penalty

reg_loss = 0.5*reg*np.sum(W*W)
loss = data_loss + reg_loss

Compute gradient

• Notations

- u_k : output for label k
- p_k : softmax probability for label k
- $\ell(W, b)$: cross-entropy loss

• Chain rule:
$$\frac{\partial \ell(W,b)}{\partial W} = \frac{\partial \ell}{\partial u} \cdot \frac{\partial u}{\partial W}$$
 (next lecture)
• Claim: $\frac{\partial \ell}{\partial u_k} = p_k - 1_{y=k}, \frac{\partial u}{\partial W} = X^{\mathsf{T}}$ (next lecture)

Compute the analytic gradient

Compute the gradient

• Gradient of ℓ_2 penalty (weight decay)

Compute the analytic gradient

Trainng loss

iteration 10: loss 0.9134056496088602	
iteration 20: loss 0.8323889971607258	
iteration 30: loss 0.7955967913635283	
iteration 40: loss 0.7762634535759677	
iteration 50: loss 0.7651042787584552	
iteration 60: loss 0.7582423095449976	
iteration 70: loss 0.7538293272190891	
iteration 80: loss 0.7508959335854734	
iteration 90: loss 0.7488963644108956	
iteration 100: loss 0.7475063136555101	
iteration 110: loss 0.7465247676838905	
iteration 120: loss 0.7458228704214372	
iteration 130: loss 0.7453157377782931	
iteration 140: loss 0.7449461859000616	
iteration 150: loss 0.7446749691022985	This is quite high
iteration 160: loss 0.744474730614621	- 0
iteration 170: loss 0.7443261494995304	for three classes:
iteration 180: loss 0.7442154278913563	. 1
iteration 190: loss 0.7441326186704039	$-\log \frac{1}{3} = 1.10$
iteration 200: loss 0.7440704927051738	

Can we do better?

- First trainable layer: weight matrix $w_1 \in \mathbb{R}^{D \times h}$, bias $b_1 \in \mathbb{R}^h$
- Add activation function: $\sigma: \mathbb{R} \to \mathbb{R}$
- Add a second trainable layer: weight matrix $W_2 \in \mathbb{R}^{h \times K}$, bias $b_2 \in \mathbb{R}^K$

Compute output

• Rectified linear units (ReLU): $\sigma(z) = \max(z, 0)$

$$u = \sigma(XW_1 + 1 \cdot b_1)W_2 + 1 \cdot b_2$$

Compute the output

In [4]: # evaluate class scores with a 2-layer Neural Network
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
scores = hidden_layer @ W2 + b2

Compute gradient

- Gradient of the second layer: Similar to the linear layer case since it is only for the cross-entropy loss. Treat the hidden layer output as input
- Gradient of the first layer

Compute the analytic gradient

```
In [6]: # backpropate the gradient to the parameters
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples
# first backprop into parameters W2 and b2
dW2 = hidden_layer.T @ dscores
db2 = np.sum(dscores, axis=0, keepdims=True)
dhidden = dscores @ W2.T
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0
# finally into W,b</pre>
```

```
dW = X.T @ dhidden
db = np.sum(dhidden, axis=0, keepdims=True)
```


Training results

• Comparing loss between linear classifier (left) and ReLU classifier (right)

iteration 10: loss 0.9134056496088602 iteration 20: loss 0.8323889971607258 iteration 30: loss 0.7955967913635283 iteration 40: loss 0.7762634535759677 iteration 50: loss 0.7651042787584552 iteration 60: loss 0.7582423095449976 iteration 70: loss 0.7538293272190891 iteration 80: loss 0.7508959335854734 iteration 90: loss 0.7488963644108956 iteration 100: loss 0.7475063136555101 iteration 110: loss 0.7465247676838905 iteration 120: loss 0.7458228704214372 iteration 130: loss 0.7453157377782931 iteration 140: loss 0.7449461859000616 iteration 150: loss 0.7446749691022985 iteration 160: loss 0.744474730614621 iteration 170: loss 0.7443261494995304 iteration 180: loss 0.7442154278913563 iteration 190: loss 0.7441326186704039 iteration 200: loss 0.7440704927051738

iteration 1000: loss 0.40454021503681153 iteration 2000: loss 0.26346369806692593 iteration 3000: loss 0.25607811374045586 iteration 4000: loss 0.25410664245334263 iteration 5000: loss 0.2526010149171124 iteration 6000: loss 0.25198089929407874 iteration 7000: loss 0.25155952434511186 iteration 8000: loss 0.2512825150552082 iteration 9000: loss 0.2511044228402025 iteration 10000: loss 0.2509892383094693

Visualization

• Visualizing decision boundaries

Announcements

• Instructions for the course project will be released this afternoon

