
Supervised Machine Learning and
Learning Theory

Lecture 12: Convolutional neural networks

October 15, 2024

Warm-up questions
• What is the difference between random forests and gradient boosting?

• For random forests, how many features are usually selected to fit each tree?

• Name several choices of activation functions for designing an artificial neuron

• Describe the difference between sigmoid activation and perceptron

Lecture plan
• Convolutional layers

Handwritten digit classification
• Classifying handwritten digits

Object recognition
• CIFAR-10

Object recognition
• ImageNet (1000 classes)

Issues of using feedforward neural networks for large images

• Feedforward neural networks use fully-connected layers to transform the input
• Fully-connected layers do not scale to large images
• A black-and-white digit in MNIST has size 28 by 28. A colored image in CIFAR-10 has

size 32 by 32 by 3
• For MNIST, a fully-connected neuron needs 28×28 = 784 weights
• For CIFAR-10, a fully-connected neuron needs 32×32×3 = 3,072 weights
• Processing larger images requires more parameters

CNN only uses local connections
• In convolutional neural networks (CNN), a neuron only connects to a small

local region of the image
• Example: A colored (2D) image is specified by width, height, and depth

Types of layers
• A CNN involves a combination of the following types of layers

• Input layer: Raw pixel values of the image

• Convolution layer: Combine pixel values in a local region

• Pooling layer: Down sample pixels

• Fully-connected layers: Classification/prediction

Illustration of CNN architectures

Input Convolution Convolution Max
pooling

Fully-
connected

ReLU Output

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, first patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, second patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, third patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, last patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 1

• Second row, first patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• Second row, second patch

Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• Last row, last patch

• Question: What is the final output size?

Convolution layer
• Filter (depth times width): Larger filter captures coarser spatial patterns,

while smaller filters capture finer spatial patterns

• Stride (depth times width): How often do we slide the filter? For example,
when the stride is 1, we slide the filter one pixel at a time

• Zero padding: Pad the input with zeros around the border

• MNIST example: filter size (3, 3), stride size (1, 1), zero padding size 0
• Question: Suppose we want to preserve the spatial size of the input so that the input

and output have the same size. What should we set as the zero padding size?

Illustration
• Input dimension is one, filter size is (3), stride is (1)

• Multiply the input with the neuron weights pixel-by-pixel
Neuron Weights

What should the output be?

Input
Sequence

Illustration
• Illustration of spatial arrangement with a simplified example
• Filter size is (3)
• Stride is (1)

Neuron Weights

Input
Sequence

Explaining zero padding size
• This example uses a single zero padding on both left and right

• We can use zero padding to adjust the output dimension, e.g., in sentence
classification, use zero padding for fixed (max) length sentences

Stride size
• Constraints

• Filter size and stride size must satisfy that: (image width – filter size) should be
divisible by (stride size)

• Otherwise, add zero padding

• Question: What goes wrong if this constraint is not satisfied?

Example (CIFAR-10)
• Illustrating the convolution operation for an image of size (32, 32, 3)

• Within each neuron, perform convolution with possible nonlinear activation

• Question: can you specify a convolution layer configuration for CIFAR-10?

A neuron only connects
to a small “local region”

Example (ImageNet)
• ImageNet: Each image has size (227, 227, 3)
• AlexNet (2012), led by Goeff Hinton at Google
• First convolution layer uses

• Filter size: 11 by 11 by 3
• Stride: 4 by 4
• Zero-padding: 0
• (227 – 11) is divisible by 4

• Number of different filters is 96

• Question: Final output size?
• (227 – 11) / 4 + 1 = 55: 55 by 55 by 96

Nobel prize in physics 2024!!

Example (ImageNet)

Conv Pooling Conv Pooling

Comparison of number of parameters
• In ImageNet, each image has size (227, 227, 3)

• If we use a fully-connected layer: Suppose there are 100 filters, the total number
of parameters is 227*227*3*100; this is very large

• If we use a convolution layer: 11*11*3*100=36,300

• Key idea: parameter sharing, i.e., we use the same parameters in every
filter
• Leverages the geometry already present in visual images

Summary
• Input: A 3D image of size (𝑊!, 𝐻!, 𝐷!)
• Convolution layer:

• Number of filters 𝐾
• Filter size 𝐹 (𝐹×𝐹×𝐷!)
• Stride size 𝑆
• Zero padding size 𝑃

• Produces an output of size (𝑊", 𝐻", 𝐷"). What is it?
• 𝑊" =

#!$%&"'
(

+ 1

• 𝐻" =
)!$%&"'

(
+ 1

• 𝐷" = 𝐾

• With parameter sharing, 𝐹×𝐹×𝐷! weights per filter, for a total of 𝐹"×𝐷! ×𝐾 weights

Numpy example
• Input: numpy array 𝑿
• 𝑋. 𝑠ℎ𝑎𝑝𝑒 = (11,11,4)

• Convolution layer
• Number of filters: 𝐾 = 2
• Filter size: 5×5×4
• Stride size: 2×2
• Zero padding size: 0

• Output: Denote as 𝑉
• Output width and height: !!"#$ + 1 = 4
• Depth: 2

Numpy example
• First depth slice, along the first column: Filter parameters 𝑊!, Bias 𝑏!.
𝑊!. 𝑠ℎ𝑎𝑝𝑒 = (5, 5, 4)

• 𝑉 0,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 : 5, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 1,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 2: 7, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 2,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 4: 9, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 3,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 6: 11, : 5, ∶ 	∗ 𝑊% + 𝑏%

Numpy example
• For a different neuron: Filter parameters 𝑊", bias 𝑏"

• 𝑉 0,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 : 5, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 1,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 2: 7, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 2,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 4: 9, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 3,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 6: 11, : 5, ∶ 	∗ 𝑊! + 𝑏!

• Question: how do we calculate 𝑉 0,1,1 and 𝑉 2,3,1 ?

Lecture plan
• Pooling layers

Pooling layer
• Pooling reduces the spatial size of the input: Insert a pooling layer

between convolution layers

Pooling layer
• Input: An image of size 𝑊!, 𝐻!, 𝐷!

• Pooling layer
• Filter size 𝐹
• Stride size 𝑆

• Output size: (𝑊$, 𝐻$, 𝐷$)
• 𝑊! =

"!#$
%

+ 1

• 𝐻! =
&!#$
%

+ 1
• 𝐷! = 𝐷'

• Previous example: 𝑭 = 𝟐 and 𝑺 = 𝟐

CNN architecture

• A deep CNN involves multiple convolution and pooling layers
• Input -> [[Conv -> ReLU]*N -> Pool?]*M -> [FC -> ReLU]*K -> FC

Input Convolution Max
pooling

Fully-
connected

ReLU Output

ReLU

Summary of CNN architecture

• Input -> FC: Linear classifier
• Input -> FC -> ReLU: Non-linear classifier
• Input -> (Conv -> ReLU -> Pool)*2 -> FC -> ReLU -> FC: A simple CNN architecture
• Input -> (Conv -> ReLU -> Conv -> ReLU -> Pool) -> FC -> ReLU -> FC: Suitable for

large images

Input Convolution Max
pooling

Fully-
connected

ReLU Output

ReLU

Lecture plan
• Implementation of a simple CNN in PyTorch

Implementation in PyTorch
• Loading dependencies

Loading dataset

Visualization

Defining network architecture

Training procedure
• Stochastic gradient descent
• Let 𝑤& be the parameters of a neural network
• Let 𝑓'! be the neural network
• Let ∇E𝐿(𝑓'!) be the gradient of the training loss

at 𝑤&
• Let 𝜂 be a learning rate parameter, and 𝐵 be the

number of batches
• For 𝑖 = 0,1, … , 𝐵 − 1

𝑤+ ← 𝑤+ − 𝜂 ⋅ ∇9𝐿, 𝑓-! ,
where the loss is evaluated on the 𝑖-th batch

Test accuracy

Training and test loss curves

Illustration of stochastic gradient descent
• Stochastic Gradient Descent

updates for each example, whereas
gradient descent updates for all
examples

A more sophisticated CNN architecture

More suitable for large-sized, colored images
(e.g., ImageNet)

Announcements
• HW2 is due

• Submit regrade requests on gradescope or drop by TA office hours to
double check grading doubts

• We will release HW3 later today (this homework will be lighter than
HW2)

