# Supervised Machine Learning and Learning Theory

Lecture 11: Introduction to neural networks

October 11, 2024



# Warm-up questions

- For bagging and random forests, how do we run cross-validation, and compute the cross-validation error?
  - A: After bootstrap there are  $\sim 37\%$  data left, we use that as the holdout set to compute CV error
- What is the advantage of random forests compared to bagging?
  - A: RF captures more dependencies of feature subsets due to its sampling of features during construction
- What are the key design parameters in random forests? And how should we adjust them?
  - A: # trees, # features (or columns) per sample, depth; we adjust them with CV
- What about gradient boosted trees compared to random forests? Also describe their differences
  - A: Gradient boosted trees are sequential while RFs are parallel; Gradient boosted trees are deterministic, and each tree only has few splits (unlike RFs where a tree can have many splits)



# Gradient boosting



 $\hat{f}(x) = \lambda \hat{f}^{1}(x) + \lambda \hat{f}^{2}(x) + +\lambda \hat{f}^{3}(x) + \dots + \lambda \hat{f}^{B}(x)$ 



• Another way of boosting: suppose  $Y \in \{-1,1\}$ 

|                       | Initial weight        |     |  |  |  |
|-----------------------|-----------------------|-----|--|--|--|
| <i>X</i> <sub>1</sub> | <i>Y</i> <sub>1</sub> | 1/5 |  |  |  |
| <i>X</i> <sub>2</sub> | <i>Y</i> <sub>2</sub> | 1/5 |  |  |  |
| <i>X</i> <sub>3</sub> | <i>Y</i> <sub>3</sub> | 1/5 |  |  |  |
| $X_4$                 | $Y_4$                 | 1/5 |  |  |  |
| <i>X</i> <sub>5</sub> | <i>Y</i> <sub>5</sub> | 1/5 |  |  |  |

$$Error = \frac{1}{n} \sum_{i} I(\hat{f}(X_i) \neq Y_i) = \frac{2}{5}$$

$$\frac{1}{2}\log\frac{1 - Total \ Error}{Total \ Error} = \frac{1}{2}\log\frac{1 - 2/5}{2/5} = 0.088$$

Fitted tree  $\hat{f}^1(x)$ Correctly predict all samples besides  $Y_3$  and  $Y_5$  *Increase* sample weight for the sample that was incorrectly classified *Decrease* sample weight for the sample that was correctly classified



| <i>X</i> <sub>1</sub> | <i>Y</i> <sub>1</sub> | 1/5 |
|-----------------------|-----------------------|-----|
| <i>X</i> <sub>2</sub> | <i>Y</i> <sub>2</sub> | 1/5 |
| <i>X</i> <sub>3</sub> | <i>Y</i> <sub>3</sub> | 1/5 |
| <i>X</i> <sub>4</sub> | $Y_4$                 | 1/5 |
| <i>X</i> <sub>5</sub> | <i>Y</i> <sub>5</sub> | 1/5 |

Initial weight

$$\frac{1}{2}\log\frac{1 - Total \ Error}{Total \ Error} = \frac{1}{2}\log\frac{1 - 2/5}{2/5} = 0.088$$

*Increase* the sample weight for the sample that was incorrectly classified

*New sample weight* = *sample weight*× exp(*Amount of stay*) *New sample weight* =  $\frac{1}{5}$ × exp(*Amount of stay*) = 0.2184

Decrease the sample weight for the sample that was correctly classified

Fitted tree  $\hat{f}^1(x)$ Correctly predict all samples besides  $Y_3$  and  $Y_5$ 

New sample weight = sample weight × exp(-Amount of stay)  
New sample weight = 
$$\frac{1}{5}$$
 × exp(-Amount of stay) = 0.1831





Fitted tree  $\hat{f}^1(x)$ Correctly predict all samples besides  $Y_3$  and  $Y_5$ 

Sum of the weights =  $0.9862 \neq 1$ 







Fitted tree  $\hat{f}^1(x)$ Correctly predict all samples besides  $Y_3$  and  $Y_5$  Fitted tree  $\hat{f}^2(x)$ 

UVERSIT

Predict the most likely class:  $\hat{f}(x) = Sign(\sum_{b=1}^{B} \lambda_b \hat{f}^b(x))$ , recall that  $Y \in \{-1,1\}$ , so is  $\hat{f}^b(x)$ 

Lecture plan

#### • Neural networks

- Geoff Hinton on receiving Nobel prize for his work on laying the foundation of artificial neural networks
- <u>https://www.youtube.com/watch?v=DNQ9YbyUNSQ</u>
- <u>https://www.youtube.com/watch?v=-icD\_KmvnnM</u>



# Simplest problem: Handwritten digit recognition

• Input: handwritten digits from 0 to 9 in black and white



- MNIST: <u>http://yann.lecun.com/exdb/mnist/</u>
  - 50,000 handwritten digits for training; 5,000 for validation; 5,000 for testing



# Colored digits

- Colored MNIST: Colored digits in a black ground
  - Input is represented from 3 times 28 times 28 pixels



- A naive model may simply predict the digit based on its color---a problem known as **spurious correlation**
- Link: <u>https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored\_mnist/main.py</u>



# Housing numbers

• Street view house numbers: <u>http://ufldl.stanford.edu/housenumbers/</u>



- 73,257 digits for training; 26,032 digits for testing; 531,131 unlabeled digits
- Similar examples for car plates (e.g., highway tolls)



#### Feedforward neural networks

• Example of a feedforward neural network



• This simple approach works well on MNIST and other handwritten digit recognition examples



### Lecture plan

• Artificial neuron: Perceptron, <u>https://en.wikipedia.org/wiki/Perceptron</u>



#### An artificial neuron

• Perceptron is a type of artificial neuron



- Input: *n* real values  $x_1, x_2, ..., x_n$
- Weight parameters  $w_1, w_2, ..., w_n$  connecting every input to the neuron
- Output

• 
$$y = 0$$
, if  $\sum_{j=1}^{n} w_j x_j + b < 0$   
•  $y = 1$ , if  $\sum_{j=1}^{n} w_j x_j + b \ge 0$ 



# Example

- There is a brand-new restaurant that had just opened near Northeastern
  - $x_1 =$  "Is the dinner over \$30 per person?";  $w_1 = -30$
  - $x_2 =$  "Is the parking fee over \$10?";  $w_2 = -10$
  - $x_3 =$  "Is the wait time over half an hour?";  $w_3 = -10$
- Budget b = 40
  - If  $x_1 = 1, x_2 = 1, x_3 = 0$ , then y = 1
  - If  $x_1 = 0, x_2 = 1, x_3 = 1$ , then y = 1
  - If  $x_1 = 1, x_2 = 1, x_3 = 1$ , then y = 0



#### Succinct notation

- Vector notation allows us to write the operation within an artificial neuron more concisely
  - $\langle w, x \rangle + b \ge 0 \Rightarrow y = 1$
  - $\langle w, x \rangle + b < 0 \Rightarrow y = 0$
  - $w = [w_1, w_2, ..., w_n]$  including all weight parameters in a vector
  - b = bias: measures how easy it is to activate the neuron



# Example

- Compute elementary logical functions
- Example: Use a perceptron to represent Negated AND



- If  $x_1 = 1, x_2 = 1$ , then y = 0
- If  $x_1 = 1, x_2 = 0$ , then y = 1
- If  $x_1 = 0, x_2 = 1$ , then y = 1
- If  $x_1 = 0, x_2 = 0$ , then y = 1



Sigmoid

- Perceptron is susceptible to small perturbations
  - If  $\langle w, x \rangle + b \approx \epsilon$ , then a small change in x flips y: suppose  $\epsilon = 0.01$ , but the perturbation reduces  $\epsilon$  by 0.02; this flips y from 1 to 0



- Sigmoid neurons do not suffer from this problem
- $z = \langle w, x \rangle + b$ : If  $z \ge 0$ , then  $y = \sigma(z) \ge 0.5$ ; If z < 0, then  $y = \sigma(z) < 0.5$



# Sigmoid

- Intuition
  - When  $z = \langle w, x \rangle + b$  is very large (say  $\geq 10$ ), y is very close to one
  - When  $z = \langle w, x \rangle + b$  is very small (say < -10), y is very close to zero
- One can change the slope of sigmoid neurons by inserting a temperature parameter *t*

$$\sigma(z) = \frac{1}{1 + \exp(-t \cdot z)}$$

• Sigmoid neurons are differentiable: can run auto-differentiation in PyTorch or TensorFlow





• Neural network architecture



#### A closer look of every component





- Width: Number of neurons in the hidden layer
- In the following example, width is four





• Width also determines the number of parameters in the network



- Number of parameters: 4 times (3 + 2) plus 4 is 24
  - Width times (number of neurons in the input layer + number of neurons in the output layer) + number of hidden-layer neurons



#### Convolutional neural networks

- Number of parameters is often very large for modern neural networks
- Large parameter space comes with large model capacity

| ConvNet   | # Params |       | IM 🔥 GENE |  |
|-----------|----------|-------|-----------|--|
| AlexNet   | 60M      |       |           |  |
| VGG19     | 140M     | $\gg$ | 1.5M      |  |
| ResNet-50 | 25M      |       |           |  |

#### Deep networks

• Number of parameters can be much higher than the number of labeled examples



- Activation function  $\sigma: \mathbb{R} \to \mathbb{R}$
- Threshold function:  $\sigma(z) = 0$  if  $z \le 0, 1$  if z > 0

• Sigmoid function:  $\sigma(z) = \frac{1}{1 + \exp(-z)}$ 





- Activation function  $\sigma \colon \mathbb{R} \to \mathbb{R}$
- Linear function:  $\sigma(z) = z$
- Rectified linear units (ReLU):  $\sigma(z) = \max(z, 0)$





- Activation function  $\sigma \colon \mathbb{R} \to \mathbb{R}$
- Tanh:  $\sigma(z) = \frac{e^{2z}-1}{e^{2z}+1}$ , similar to sigmoid but allows for the -1 mode Tanh -11
- Tanh is used in transformers



### Summary of activation functions

- Threshold function:  $\sigma(z) = 0$  if  $z \le 0$ ;  $\sigma(z) = 1$  if z > 0
- Sigmoid function:  $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- Linear function:  $\sigma(z) = z$
- Rectified linear units (ReLU):  $\sigma(z) = \max(z, 0)$
- Tanh:  $\sigma(z) = \frac{e^{2z} 1}{e^{2z} + 1}$ , similar to sigmoid but allows for -1



# Quick question

- How shall we set the number of output neurons?
  - In the MNIST example, we want to use ten output nodes; one for each class from zero to nine
  - For binary classification, the number of output nodes is two
  - For regression, the number of output nodes is one



#### Multi-layer neural networks

• Extending two-layer neural network to multi-layer neural network





#### Notes

- Feedforward neural networks receive the input data in no particular order
- This works well for images and other types of data that do not require sequential information
- For text data, we process the data in a sequential order: transformer and self-attention mechanisms are ideally suited for that





• Learning algorithms



### Quadratic loss

• Given a prediction u for a data point x with label y

$$l(x) = (u - y)^2$$

• Suitable for regression problems with neural networks



# Cross-entropy loss

- Given a prediction for every label  $y \in \{1, 2, ..., k\}$ , let u be this vector
- Softmax maps u into a probability distribution:

$$\ell(u) = -\log \frac{\exp(u_y)}{\sum_{i=1}^k \exp(u_i)}$$

- Example: for MNIST, the label space is {0,1,2,...,9}. A softmax output for 1 should look like [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]
- Illustrate the gradient of cross-entropy loss



## PyTorch

CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

- *L* is the label space
- $y_n$  is the label of  $x_n$
- $x_{n,c}$  is the softmax output probability of  $x_n$  for label c

CLASS torch.nn.CrossEntropyLoss(weight=None, size\_average=None, ignore\_index=- 100, reduce=None, reduction='mean', label\_smoothing=0.0) [SOURCE]

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_{y_n}\lograc{\exp(x_{n,y_n})}{\sum_{c=1}^C\exp(x_{n,c})}\cdot 1\{y_n
eq ext{ignore\_index}\}$$

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html



### Gradient descent

• After setting up the loss  $l(f(x_i), y_i)$ , we set up an algorithm to minimize the empirical loss, measured as the averaged loss on the training set

$$\widehat{L}(f_W) = \frac{1}{n} \sum_{1 \le i \le n} l(f_W(x_i), y_i)$$

• We use optimization algorithms like gradient descent that are quick to run





# The gradient descent algorithm

- Let  $w_t$  be the parameters of a neural network
- Let  $f_{w_t}$  be the neural network
- Let  $\nabla \hat{L}(f_{w_t})$  be the gradient of the training loss at  $w_t$
- Let  $\eta$  be a learning rate parameter

$$w_t \leftarrow w_t - \eta \cdot \nabla \widehat{L}(f_{w_t})$$



# Stochastic gradient descent

- Motivation: If the half is almost identi
  - Mini-batch stochas



gradient on the first l half



## GD vs. SGD

• Gradient Descent: Update after seeing all examples



• Stochastic Gradient Descent: Update for each example





# Summary

- Classifying handwritten digits with two-layer neural nets
  - Input layer takes an input, often in vector or matrix format
  - Hidden layer uses an activation function (ReLU for handwritten digits)
  - Output layer applies softmax to convert the hidden-layer representation to a probability distribution
  - Use gradient descent to minimize the cross-entropy loss and train parameters





Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]



#### Announcements

- Suggested reading: ISLP, Chapter 10: 10.1 and 10.2
- HW1 grading released: Questions or regrade requests, submit on gradescope or post a private note on piazza/canvas!
- HW2 due next Monday
- See course schedule here

https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKH jlPycJRUB6YsIzlIFyN73iA/edit?gid=0#gid=0

