
Supervised Machine Learning and
Learning Theory

Lecture 11: Introduction to neural networks

October 11, 2024

1/ 40

Warm-up questions
• For bagging and random forests, how do we run cross-validation, and compute the

cross-validation error?
• A: After bootstrap there are ~37% data left, we use that as the holdout set to compute CV error

• What is the advantage of random forests compared to bagging?
• A: RF captures more dependencies of feature subsets due to its sampling of features during

construction
• What are the key design parameters in random forests? And how should we adjust

them?
• A: # trees, # features (or columns) per sample, depth; we adjust them with CV

• What about gradient boosted trees compared to random forests? Also describe their
differences
• A: Gradient boosted trees are sequential while RFs are parallel; Gradient boosted trees are

deterministic, and each tree only has few splits (unlike RFs where a tree can have many splits)

𝑋! 𝑌!
𝑋" 𝑌"
𝑋# 𝑌#
𝑋$ 𝑌$
𝑋% 𝑌%

#𝑓!(𝑥)

𝑋! 𝑟!!

𝑋" 𝑟"!

𝑋# 𝑟#!

𝑋$ 𝑟$!

𝑋% 𝑟%!

𝑟&! ← 𝑌& − 𝜆 #𝑓! 𝑋&

#𝑓"(𝑥)

𝑋! 𝑟!"

𝑋" 𝑟""

𝑋# 𝑟#"

𝑋$ 𝑟$"

𝑋% 𝑟%"

𝑟&" ← 𝑟&! − 𝜆 #𝑓" 𝑋&

#𝑓#(𝑥)

⋯

|CAtBat < 1452

5.093 6.464

|Assists < 222.5

 0.04544 -0.16420

|RBI < 14.5

 0.29520 -0.01167

!𝑓 𝑥 = 𝜆 !𝑓! 𝑥 + 𝜆 !𝑓" 𝑥 + +𝜆 !𝑓# 𝑥 + ⋯+ 𝜆 !𝑓$(𝑥)

Gradient boosting

AdaBoost
• Another way of boosting: suppose 𝑌 ∈ −1,1

𝑋! 𝑌! 1/5
𝑋" 𝑌" 1/5
𝑋# 𝑌# 1/5
𝑋$ 𝑌$ 1/5
𝑋% 𝑌% 1/5

Fitted tree #𝑓!(𝑥)
Correctly predict all samples besides 𝑌# and 𝑌%

Initial weight

1
2 log

1 − 𝑇𝑜𝑡𝑎𝑙	𝐸𝑟𝑟𝑜𝑟
𝑇𝑜𝑡𝑎𝑙	𝐸𝑟𝑟𝑜𝑟 =

1
2 log

1 − 2/5
2/5 = 0.088

𝐸𝑟𝑟𝑜𝑟 =
1
𝑛@

&

𝐼(#𝑓 𝑋& ≠ 𝑌&) =
2
5

Increase sample weight for the sample that was incorrectly classified
Decrease sample weight for the sample that was correctly classified

AdaBoost

1
2
log

1 − 𝑇𝑜𝑡𝑎𝑙	𝐸𝑟𝑟𝑜𝑟
𝑇𝑜𝑡𝑎𝑙	𝐸𝑟𝑟𝑜𝑟

=
1
2
log

1 − 2/5
2/5

= 0.088

Increase the sample weight for the sample that was incorrectly classified

𝑁𝑒𝑤	𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡× exp 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑦

𝑁𝑒𝑤	𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 =
1
5×exp 𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑦 = 0.2184

Decrease the sample weight for the sample that was correctly classified

𝑋! 𝑌! 1/5
𝑋" 𝑌" 1/5
𝑋# 𝑌# 1/5
𝑋$ 𝑌$ 1/5
𝑋% 𝑌% 1/5

Fitted tree #𝑓!(𝑥)
Correctly predict all samples besides 𝑌# and 𝑌%

Initial weight

𝑁𝑒𝑤	𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡× exp −𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑦

𝑁𝑒𝑤	𝑠𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 =
1
5×exp −𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑠𝑡𝑎𝑦 = 0.1831

AdaBoost

𝑋! 𝑌! 1/5
𝑋" 𝑌" 1/5
𝑋# 𝑌# 1/5
𝑋$ 𝑌$ 1/5
𝑋% 𝑌% 1/5

Fitted tree #𝑓!(𝑥)
Correctly predict all samples besides 𝑌# and 𝑌%

Initial weight

𝑋! 𝑌! 0.1831
𝑋" 𝑌" 0.1831
𝑋# 𝑌# 0.2184
𝑋$ 𝑌$ 0.1831
𝑋% 𝑌% 0.2184

New weight

Update weight

𝑆𝑢𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	 = 	0.9862 ≠ 1

AdaBoost

𝑋! 𝑌! 1/5
𝑋" 𝑌" 1/5
𝑋# 𝑌# 1/5
𝑋$ 𝑌$ 1/5
𝑋% 𝑌% 1/5

Fitted tree #𝑓!(𝑥)
Correctly predict all samples besides 𝑌# and 𝑌%

Initial weight

𝑋! 𝑌! 0.1831/0.9862
𝑋" 𝑌" 0.1831/0.9862
𝑋# 𝑌# 0.2184/0.9862
𝑋$ 𝑌$ 0.1831/0.9862
𝑋% 𝑌% 0.2184/0.9862

New weight

Update weight

Fitted tree #𝑓"(𝑥)

Predict the most likely class: #𝑓 𝑥 = 𝑆𝑖𝑔𝑛 ∑'(!) 𝜆' #𝑓' 𝑥 , recall that 𝑌 ∈ −1,1 , so is #𝑓' 𝑥

⋯

Lecture plan
• Neural networks

• Geoff Hinton on receiving Nobel prize for his work on laying the
foundation of artificial neural networks

• https://www.youtube.com/watch?v=DNQ9YbyUNSQ

• https://www.youtube.com/watch?v=-icD_KmvnnM

https://www.youtube.com/watch?v=DNQ9YbyUNSQ
https://www.youtube.com/watch?v=-icD_KmvnnM

Simplest problem: Handwritten digit recognition
• Input: handwritten digits from 0 to 9 in black and white

• MNIST: http://yann.lecun.com/exdb/mnist/
• 50,000 handwritten digits for training; 5,000 for validation; 5,000 for testing

http://yann.lecun.com/exdb/mnist/

Colored digits
• Colored MNIST: Colored digits in a black ground

• Input is represented from 3 times 28 times 28 pixels

• A naive model may simply predict the digit based on its color---a problem known as
spurious correlation
• Link: https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

Housing numbers
• Street view house numbers: http://ufldl.stanford.edu/housenumbers/

• 73,257 digits for training; 26,032 digits for testing; 531,131 unlabeled digits
• Similar examples for car plates (e.g., highway tolls)

http://ufldl.stanford.edu/housenumbers/

Feedforward neural networks
• Example of a feedforward neural network

• This simple approach works well on MNIST and other handwritten digit
recognition examples

Lecture plan
• Artificial neuron: Perceptron, https://en.wikipedia.org/wiki/Perceptron

https://en.wikipedia.org/wiki/Perceptron

An artificial neuron
• Perceptron is a type of artificial neuron

• Input: 𝑛 real values 𝑥*, 𝑥+, … , 𝑥,
• Weight parameters 𝑤*, 𝑤+, … , 𝑤, connecting every input to the neuron
• Output
• 𝑦 = 0, if ∑[\]^ 𝑤[𝑥[+ 𝑏 < 0
• 𝑦 = 1, if ∑[\]^ 𝑤[𝑥[+ 𝑏 ≥0

Example
• There is a brand-new restaurant that had just opened near Northeastern
• 𝑥] = “Is the dinner over $30 per person?”; 𝑤] = −30
• 𝑥_ = “Is the parking fee over $10?”; 𝑤_ = −10
• 𝑥` = “Is the wait time over half an hour?”; 𝑤` = −10

• Budget b = 40
• If 𝑥] = 1, 𝑥_ = 1, 𝑥` = 0, then 𝑦 = 1
• If 𝑥] = 0, 𝑥_ = 1, 𝑥` = 1, then 𝑦 = 1
• If 𝑥] = 1, 𝑥_ = 1, 𝑥` = 1, then 𝑦 = 0

Succinct notation
• Vector notation allows us to write the operation within an artificial

neuron more concisely
• 𝑤, 𝑥 + 𝑏 ≥ 0 ⇒ 𝑦 = 1
• 𝑤, 𝑥 + 𝑏 < 0 ⇒ 𝑦 = 0
• 𝑤 = [𝑤], 𝑤_, … , 𝑤^] including all weight parameters in a vector
• 𝑏 = bias: measures how easy it is to activate the neuron

Example
• Compute elementary logical functions
• Example: Use a perceptron to represent Negated AND

• If 𝑥* = 1, 𝑥+ = 1, then 𝑦 = 0
• If 𝑥* = 1, 𝑥+ = 0, then 𝑦 = 1
• If 𝑥* = 0, 𝑥+ = 1, then 𝑦 = 1
• If 𝑥* = 0, 𝑥+ = 0, then 𝑦 = 1

Sigmoid
• Perceptron is susceptible to small perturbations
• If 𝑤, 𝑥 + 𝑏 ≈ 𝜖, then a small change in 𝑥 flips 𝑦: suppose 𝜖 = 0.01, but the perturbation

reduces 𝜖 by 0.02; this flips 𝑦 from 1 to 0

• Sigmoid neurons do not suffer from this problem
• 𝑧 = 𝑤, 𝑥 + 𝑏: If 𝑧 ≥ 0, then y = 𝜎 𝑧 ≥ 0.5; If 𝑧 < 0, then y = 𝜎 𝑧 < 0.5

Sigmoid
• Intuition
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very large (say ≥ 10), 𝑦 is very close to one
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very small (say < −10), 𝑦 is very close to zero

• One can change the slope of sigmoid neurons by inserting a temperature
parameter 𝑡

𝜎 𝑧 =
1

1 + exp −𝑡 ⋅ 𝑧

• Sigmoid neurons are differentiable: can run auto-differentiation in
PyTorch or TensorFlow

Lecture plan
• Neural network architecture

A closer look of every component

Prediction over {0,1,2,3,4,5,6,7,8,9}

hidden layer with
four neurons

𝝈(𝒛) is the neuron’s
activation function

Design choices
• Width: Number of neurons in the hidden layer
• In the following example, width is four

Design choices
• Width also determines the number of parameters in the network

• Number of parameters: 4 times (3 + 2) plus 4 is 24
• Width times (number of neurons in the input layer + number of neurons in the

output layer) + number of hidden-layer neurons

Convolutional neural networks
• Number of parameters is often very large for modern neural networks
• Large parameter space comes with large model capacity

• Number of parameters can be much higher than the number of labeled
examples

ConvNet # Params

AlexNet 60M

VGG19 140M

ResNet-50 25M

≫ 1.5M

Deep networks

Design choices
• Activation function 𝜎:ℝ → ℝ
• Threshold function: 𝜎 𝑧 = 0	𝑖𝑓	𝑧 ≤ 0, 1	𝑖𝑓	𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = *
*./01(23)

Design choices
• Activation function 𝜎:ℝ → ℝ
• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

Design choices
• Activation function 𝜎:ℝ → ℝ

• Tanh: 𝜎 𝑧 = 4!"2*
4!".*

, similar to sigmoid but allows for the -1 mode

• Tanh is used in transformers

Summary of activation functions
• Threshold function: 𝜎 𝑧 = 0	𝑖𝑓	𝑧 ≤ 0; 𝜎 𝑧 = 1	𝑖𝑓	𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = *
*./01(23)

• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

• Tanh: 𝜎 𝑧 = 4!"2*
4!".*

, similar to sigmoid but allows for −1

Quick question
• How shall we set the number of output neurons?

• In the MNIST example, we want to use ten output nodes; one for each class
from zero to nine

• For binary classification, the number of output nodes is two

• For regression, the number of output nodes is one

Multi-layer neural networks
• Extending two-layer neural network to multi-layer neural network

Notes
• Feedforward neural networks receive the input data in no particular order

• This works well for images and other types of data that do not require
sequential information

• For text data, we process the data in a sequential order: transformer and
self-attention mechanisms are ideally suited for that

Lecture plan
• Learning algorithms

Quadratic loss
• Given a prediction 𝑢	for a data point 𝑥 with label 𝑦

𝑙 𝑥 = (𝑢 − 𝑦)+

• Suitable for regression problems with neural networks

Cross-entropy loss
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝑘}, let 𝑢 be this vector
• Softmax maps 𝑢 into a probability distribution:

ℓ 𝑢 = − log
exp(𝑢5)

∑67*8 exp(𝑢6)

• Example: for MNIST, the label space is {0,1,2, … , 9}. A softmax output for
1 should look like [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]
• Illustrate the gradient of cross-entropy loss

PyTorch
CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

• 𝐿 is the label space
• 𝑦, is the label of 𝑥,
• 𝑥,,: is the softmax output probability of 𝑥, for label 𝑐

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Gradient descent
• After setting up the loss 𝑙 𝑓 𝑥6 , 𝑦6 , we set up an algorithm to minimize

the empirical loss, measured as the averaged loss on the training set

W𝐿 𝑓; =
1
𝑛
X
*<6<,

𝑙 𝑓; 𝑥6 , 𝑦6

• We use optimization algorithms like gradient descent that are quick to run

The gradient descent algorithm
• Let 𝑤= be the parameters of a neural network
• Let 𝑓># be the neural network

• Let ∇W𝐿(𝑓>#) be the gradient of the training loss at 𝑤=

• Let 𝜂 be a learning rate parameter

𝑤= ← 𝑤= − 𝜂 ⋅ ∇W𝐿(𝑓>#)

Stochastic gradient descent
• Motivation: If the dataset is highly redundant, the gradient on the first

half is almost identical to the gradient on the second half
• Mini-batch stochastic gradient descent

GD vs. SGD
• Gradient Descent: Update after

seeing all examples
• Stochastic Gradient Descent:

Update for each example

Summary
• Classifying handwritten digits with two-layer neural nets
• Input layer takes an input, often in vector or matrix format
• Hidden layer uses an activation function (ReLU for handwritten digits)
• Output layer applies softmax to convert the hidden-layer representation to a

probability distribution
• Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Announcements
• Suggested reading: ISLP, Chapter 10: 10.1 and 10.2

• HW1 grading released: Questions or regrade requests, submit on
gradescope or post a private note on piazza/canvas!

• HW2 due next Monday

• See course schedule here
https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKH
jlPycJRUB6YsIzlIFyN73iA/edit?gid=0#gid=0

https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0
https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0

