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Warm-up questions
• For bagging and random forests, how do we run cross-validation, and compute the 

cross-validation error?
• A: After bootstrap there are ~37% data left, we use that as the holdout set to compute CV error

• What is the advantage of  random forests compared to bagging?
• A: RF captures more dependencies of  feature subsets due to its sampling of  features during 

construction
• What are the key design parameters in random forests? And how should we adjust 

them?
• A: # trees, # features (or columns) per sample, depth; we adjust them with CV

• What about gradient boosted trees compared to random forests? Also describe their 
differences
• A: Gradient boosted trees are sequential while RFs are parallel; Gradient boosted trees are 

deterministic, and each tree only has few splits (unlike RFs where a tree can have many splits)
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Gradient boosting



AdaBoost
• Another way of  boosting: suppose 𝑌 ∈ −1,1
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AdaBoost
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Increase the sample weight for the sample that was incorrectly classified
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AdaBoost
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AdaBoost
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Lecture plan
• Neural networks

• Geoff  Hinton on receiving Nobel prize for his work on laying the 
foundation of  artificial neural networks

• https://www.youtube.com/watch?v=DNQ9YbyUNSQ

• https://www.youtube.com/watch?v=-icD_KmvnnM

https://www.youtube.com/watch?v=DNQ9YbyUNSQ
https://www.youtube.com/watch?v=-icD_KmvnnM


Simplest problem: Handwritten digit recognition
• Input: handwritten digits from 0 to 9 in black and white

• MNIST: http://yann.lecun.com/exdb/mnist/
• 50,000 handwritten digits for training; 5,000 for validation; 5,000 for testing

http://yann.lecun.com/exdb/mnist/


Colored digits
• Colored MNIST: Colored digits in a black ground

• Input is represented from 3 times 28 times 28 pixels

• A naive model may simply predict the digit based on its color---a problem known as 
spurious correlation
• Link: https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py


Housing numbers
• Street view house numbers: http://ufldl.stanford.edu/housenumbers/

• 73,257 digits for training; 26,032 digits for testing; 531,131 unlabeled digits
• Similar examples for car plates (e.g., highway tolls)

http://ufldl.stanford.edu/housenumbers/


Feedforward neural networks
• Example of  a feedforward neural network

• This simple approach works well on MNIST and other handwritten digit 
recognition examples



Lecture plan
• Artificial neuron: Perceptron, https://en.wikipedia.org/wiki/Perceptron 

https://en.wikipedia.org/wiki/Perceptron


An artificial neuron
• Perceptron is a type of  artificial neuron

• Input: 𝑛 real values 𝑥*, 𝑥+, … , 𝑥,
• Weight parameters 𝑤*, 𝑤+, … , 𝑤, connecting every input to the neuron
• Output
• 𝑦 = 0, if  ∑[\]^ 𝑤[𝑥[ + 𝑏 < 0
• 𝑦 = 1, if  ∑[\]^ 𝑤[𝑥[ + 𝑏 ≥0



Example
• There is a brand-new restaurant that had just opened near Northeastern
• 𝑥] = “Is the dinner over $30 per person?”; 𝑤] = −30
• 𝑥_ = “Is the parking fee over $10?”; 𝑤_ = −10
• 𝑥` = “Is the wait time over half  an hour?”; 𝑤` = −10

• Budget b = 40
• If  𝑥] = 1, 𝑥_ = 1, 𝑥` = 0, then 𝑦 = 1
• If  𝑥] = 0, 𝑥_ = 1, 𝑥` = 1, then 𝑦 = 1
• If  𝑥] = 1, 𝑥_ = 1, 𝑥` = 1, then 𝑦 = 0



Succinct notation
• Vector notation allows us to write the operation within an artificial 

neuron more concisely
• 𝑤, 𝑥 + 𝑏 ≥ 0 ⇒ 𝑦 = 1
• 𝑤, 𝑥 + 𝑏 < 0 ⇒ 𝑦 = 0
• 𝑤 = [𝑤], 𝑤_, … , 𝑤^] including all weight parameters in a vector
• 𝑏 = bias: measures how easy it is to activate the neuron



Example
• Compute elementary logical functions
• Example: Use a perceptron to represent Negated AND

• If  𝑥* = 1, 𝑥+ = 1, then 𝑦 = 0
• If  𝑥* = 1, 𝑥+ = 0, then 𝑦 = 1
• If  𝑥* = 0, 𝑥+ = 1, then 𝑦 = 1
• If  𝑥* = 0, 𝑥+ = 0, then 𝑦 = 1



Sigmoid
• Perceptron is susceptible to small perturbations
• If  𝑤, 𝑥 + 𝑏 ≈ 𝜖, then a small change in 𝑥 flips 𝑦: suppose 𝜖 = 0.01, but the perturbation 

reduces 𝜖 by 0.02; this flips 𝑦 from 1 to 0

• Sigmoid neurons do not suffer from this problem
• 𝑧 = 𝑤, 𝑥 + 𝑏: If  𝑧 ≥ 0, then y = 𝜎 𝑧 ≥ 0.5; If  𝑧 < 0, then y = 𝜎 𝑧 < 0.5



Sigmoid
• Intuition
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very large (say ≥ 10), 𝑦 is very close to one
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very small (say < −10), 𝑦 is very close to zero

• One can change the slope of  sigmoid neurons by inserting a temperature 
parameter 𝑡

𝜎 𝑧 =
1

1 + exp −𝑡 ⋅ 𝑧

• Sigmoid neurons are differentiable: can run auto-differentiation in 
PyTorch or TensorFlow



Lecture plan
• Neural network architecture



A closer look of  every component

Prediction over {0,1,2,3,4,5,6,7,8,9}

hidden layer with
four neurons

𝝈(𝒛) is the neuron’s 
activation function



Design choices
• Width: Number of  neurons in the hidden layer
• In the following example, width is four



Design choices
• Width also determines the number of  parameters in the network

• Number of  parameters: 4 times (3 + 2) plus 4 is 24
• Width times (number of  neurons in the input layer + number of  neurons in the 

output layer) + number of  hidden-layer neurons



Convolutional neural networks
• Number of  parameters is often very large for modern neural networks
• Large parameter space comes with large model capacity

• Number of  parameters can be much higher than the number of  labeled 
examples

ConvNet # Params

AlexNet 60M

VGG19 140M

ResNet-50 25M

≫  1.5M

Deep networks



Design choices
• Activation function 𝜎:ℝ → ℝ
• Threshold function: 𝜎 𝑧 = 0	𝑖𝑓	𝑧 ≤ 0, 1	𝑖𝑓	𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = *
*./01(23)



Design choices
• Activation function 𝜎:ℝ → ℝ
• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)



Design choices
• Activation function 𝜎:ℝ → ℝ

• Tanh: 𝜎 𝑧 = 4!"2*
4!".*

, similar to sigmoid but allows for the -1 mode

• Tanh is used in transformers



Summary of  activation functions
• Threshold function: 𝜎 𝑧 = 0	𝑖𝑓	𝑧 ≤ 0; 𝜎 𝑧 = 1	𝑖𝑓	𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = *
*./01(23)

• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

• Tanh: 𝜎 𝑧 = 4!"2*
4!".*

, similar to sigmoid but allows for −1



Quick question
• How shall we set the number of  output neurons?

• In the MNIST example, we want to use ten output nodes; one for each class 
from zero to nine

• For binary classification, the number of  output nodes is two

• For regression, the number of  output nodes is one



Multi-layer neural networks
• Extending two-layer neural network to multi-layer neural network



Notes
• Feedforward neural networks receive the input data in no particular order

• This works well for images and other types of  data that do not require 
sequential information

• For text data, we process the data in a sequential order: transformer and 
self-attention mechanisms are ideally suited for that



Lecture plan
• Learning algorithms



Quadratic loss
• Given a prediction 𝑢	for a data point 𝑥 with label 𝑦

𝑙 𝑥 = (𝑢 − 𝑦)+

• Suitable for regression problems with neural networks



Cross-entropy loss
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝑘}, let 𝑢 be this vector
• Softmax maps 𝑢 into a probability distribution:

ℓ 𝑢 = − log
exp(𝑢5)

∑67*8 exp(𝑢6)

• Example: for MNIST, the label space is {0,1,2, … , 9}. A softmax output for 
1 should look like [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]
• Illustrate the gradient of  cross-entropy loss



PyTorch
CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

• 𝐿 is the label space
• 𝑦, is the label of  𝑥,
• 𝑥,,: is the softmax output probability of  𝑥, for label 𝑐

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html 

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


Gradient descent
• After setting up the loss 𝑙 𝑓 𝑥6 , 𝑦6 , we set up an algorithm to minimize 

the empirical loss, measured as the averaged loss on the training set

W𝐿 𝑓; =
1
𝑛
X
*<6<,

𝑙 𝑓; 𝑥6 , 𝑦6

• We use optimization algorithms like gradient descent that are quick to run



The gradient descent algorithm
• Let 𝑤= be the parameters of  a neural network
• Let 𝑓># be the neural network

• Let ∇W𝐿(𝑓>#) be the gradient of  the training loss at 𝑤=

• Let 𝜂 be a learning rate parameter

𝑤= ← 𝑤= − 𝜂 ⋅ ∇W𝐿(𝑓>#)



Stochastic gradient descent
• Motivation: If  the dataset is highly redundant, the gradient on the first 

half  is almost identical to the gradient on the second half
• Mini-batch stochastic gradient descent



GD vs. SGD
• Gradient Descent: Update after 

seeing all examples
• Stochastic Gradient Descent: 

Update for each example



Summary
• Classifying handwritten digits with two-layer neural nets
• Input layer takes an input, often in vector or matrix format
• Hidden layer uses an activation function (ReLU for handwritten digits)
• Output layer applies softmax to convert the hidden-layer representation to a 

probability distribution
• Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]



Announcements
• Suggested reading: ISLP, Chapter 10: 10.1 and 10.2

• HW1 grading released: Questions or regrade requests, submit on 
gradescope or post a private note on piazza/canvas!

• HW2 due next Monday

• See course schedule here 
https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKH
jlPycJRUB6YsIzlIFyN73iA/edit?gid=0#gid=0 

https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0
https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0

