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Warm up questions
• What is the purpose of  the bootstrap procedure? And how does it work?

• When do we expect to perform subset selection?

• Could you write down the logistic regression model for classifying 
handwritten digits?



Example
• Credit card dataset: Predict whether customers default on their credit 

card debt
• Predictors (11 predictors in total)

• Income: Income in $1,000’s
• Limit: Credit limit
• Rating: Credit rating
• Cards: Number of  credit cards
• Age: Age in years
• Education: Number of  years of  education
• Gender: A factor with levels Male and Female
• Student: A factor with levels No and Yes indicating the individual was a student
• Married: A factor with levels No and Yes indicating whether the individual was married
• Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the 

individual's ethnicity
• Balance: Average credit card balance in $



Stepwise selection methods
• Forward stepwise selection
• Start with a model with no predictors

• Add predictors to the model one-at-a-time

• Backward stepwise selection
• Start with a model with ! predictors

• Remove the least useful predictor one-at-a-time



Forward stepwise selection
• Fit at most 1 + & + & − 1 +⋯+ 1 = 1 + ∑!"#$%& & − + = 1 + $ $'&

( models in total

• Much fewer than 
&
+ (best subset selection)



Forward selection vs. best subset 
• Forward stepwise selection may fail to select the best "-variable subset



Lecture plan
• Ridge regression



Motivation
Linear model: " = $! + &"$" + &#$# +⋯+ &$$$ + (

• Suppose the number of  predictors # > % (e.g., this happens a lot in 
bioinformatics, such as gene expressions): we have more parameters than 
observations

• How can we estimate &?



Example
• Predict Boston house prices: Suppose we only have one observation (% = 1)

• Suppose we want to estimate the coefficients in simple linear regression:

)*+, = $! + -./0/ ⋅ $" + (

• How can we use one observation to estimate &,, &-?



Which !! and !" should we choose?

All of  these are valid solutions!



If  we have one more observation…
• Suppose we only have two observations (% = 2)

• Let us consider the same model: *+,- = &, + /0121 ⋅ &- + 4

• We can estimate &, and &- with two data points (solving a linear system)



Example

• Problem: The fitted curve is sensitive to the *+,- of  these two observations



Example
• If  one of  the two observations changes, we can get a very different fitted curve

• This is an example of  overfitting…
• Question: can you think of  other examples of  overfitting?



Ridge regression
• Find a new line that does not fit the training data perfectly

• Introduce a small amount of  bias into the fit to data



Ridge regression
• This can be achieved with Ridge regression: by adding a small amount of  

bias, we reduce variance (i.e., the fitted lines are less sensitive to changes with 
the input)



Fitting ridge regression
• Linear regression minimizes

234 =5
%&"

'
)*+,% − $! − -./0/ ⋅ $" #

• Ridge regression minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• 8 ≥ 0:  tuning hyper-parameter



Example
• Suppose 5 = 10
• Linear regression fit: 7*+,- = 90.118 − 2.248 ⋅ /0121

• ;$" = −2.248

• ∑%&"' )*+,% − ;$! − -./0/% ⋅ ;$"
# + 8 ⋅ ;$"#

 = 0 + 10 ⋅ 2.248# = 50.535

• Perfectly fitting the data incurs high loss



Ridge regression
• Suppose 5 = 10
• Ridge regression fit: 7*+,- = 70.234 − 1.650 ⋅ /0121

• ;$"( = −1.650

• ∑%&"' )*+,% − ;$! − -./0/% ⋅ ;$"(
# + 8 ⋅ ;$"(

#

 = 4.931 + 4.931 + 10 ⋅ 1.650# = 37.084
 < 50.535



Ridge regression is less sensitive to "#$%$ 
• Linear regression fit: 7*+,- = 90.118 −
2.248 ⋅ /0121

• One unit change in /0121 results in 
− 2.248 units change in *+,-

• Ridge regression fit: 7*+,- = 70.234 −
1.650 ⋅ /0121

• One unit change in /0121 results in 
− 1.650 units change in *+,-



Role of  & in ridge regression
• Ridge regression minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• 8 = 5



Role of  & in ridge regression
• Ridge regression minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• 8 = 10



Role of  & in ridge regression
• Ridge regression minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• 8 = 100



Role of  & in ridge regression
• Ridge regression minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• 8 = 10,000



Predictive line is less sensitive to Δ"#$%$ as & increases 
• Ridge regression minimizes: ∑./-0 *+,-. − &, − /0121. ⋅ &- 1 + 5 ⋅ &-1



Choose & by cross-validation 
How to choose the optimal 8?

1. Select a grid of  8 values

2. Compute the cross-validation error for each 8 value

3. Select the 8 with the smallest cross-validation error

4. Refit the model using all observations and selected 8



Example: Credit card dataset (ridge regression)
• Cross validation to choose the optimal 5
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Quiz: Which line is the ridge regression fit?
• One observation (% = 1)



Lecture plan
• LASSO



Motivation
• Ridge regression shrinks coefficients to approximately zero, but not 

exactly zero

• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"#

• When 8 = 10,000, ;$"( = −0.0062



What if  we want set them as zero?
• In the credit card dataset, the standardized ridge coefficients for variables 

other than income, limit, rating, and student are nonzero

• What if  we want to perform variable selection?
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One predictor
• LASSO: Least Absolute Shrinkage and Selection Operator

• Lasso minimizes

5
%&"

'
)*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"

• 8 ≥ 0:  tuning hyper-parameter



Role of  & in Lasso
• Lasso minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"

• 8 = 1 : ;$"* = −1.978



Role of  & in Lasso
• Lasso minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"

• 8 = 5 : ;$"* = −0.902



Role of  & in Lasso
• Lasso minimizes 
• ∑%&"' )*+,% − $! − -./0/% ⋅ $" # + 8 ⋅ $"

• 8 = 10 : ;$"* = 0



Multiple predictors
• LASSO minimizes 

!
!"#

$
"! − $% −!

&"#

'
$&%!,&

)

+ &!
&"#

'
$&

• !!,#: 2-th predictor of  3-th observation

• " $ = ∑#%$& "# : ℓ$ norm of  " ∈ ℝ&

• Shrinkage penalty ( does not apply to 4#

• 4#: mean of  5)



Example: Applying LASSO to the credit card dataset
• Predict default or not; 11 predictors: & - = ∑6/-7 &6

• Shrinkage ratios: coefficients shrink to zero at varying rates

Shrinkage 
ratio
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Example: Credit card dataset (LASSO)
• Predict default or not with 11 predictors

• Variable selection: As 8 increases, LASSO selects less variables
• {“empty”} → rating → limit, rating, student  → income, limit, rating, student
• LASSO path: Different coefficient values by varying M
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Choose & by cross-validation 
The procedure is the same for ridge and LASSO

1. Choose a grid of  8 values

2. Compute the cross-validation error for each 8 value

3. Select the 8 with the smallest cross-validation error

4. Refit the model using all observations and selected 8



Example
• Simulation I: Only 2 coefficients are non-zero
• Simulated data: 45 predictors, 2 out of  $", … , $+, are nonzero
• 10-fold CV to select the LASSO regularization parameter
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LASSO vs. ridge regularization
• Simulation I: Only 2 coefficients are non-zero
• Simulated data: 45 predictors, 2 out of   $", … , $+, are nonzero

• The bias, variance, and MSE are all lower for the LASSO
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LASSO vs. Ridge regularization
• Simulation II: Most of  the coefficients are nonzero 
• Simulated data: 45 predictors $", … , $+, are nonzero

• The variance of  ridge regression is smaller
• The bias is about the same for both
• Hence the MSE of  ridge regression is smaller
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Summary
• Lasso performs better if  a small number of  predictors with large 

coefficients

• Ridge performs better if  many predictors with similar coefficients


