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Warm-up questions
• What’s the difference between the logistic function and logistic loss?

• How could we extend the logit model to multi-class classification?

• What is the mixture of  Gaussians model?

• What’s the difference between LDA and QDA?

• Why does QDA have a quadratic decision boundary?



Cross validation
• Goal: Using the training dataset alone, find out the test error as closely as 

possible
• A first attempt: Randomly split the data in two parts; Train the method in 

the first part, compute the error on the second part

• Issue: loses half  the data samples, and the split has a lot of  randomness







Example
• Estimate miles per gallon (mpg) from engine horsepower
• Auto data: horsepower, gas mileage, and other information for 392 vehicles

• Linear model
mpg = !! + !"horsepower

• Polynomials
mpg = !! + !"horsepower +!#horsepower#

mpg = !! + !"horsepower +!#horsepower# +!$horsepower$
…

• Which polynomial is the right relationship? Partition 392 samples into 
two sets with equal size; one is the training dataset and the other one is 
the validation dataset



Example
• Estimate miles per gallon (mpg) from engine horsepower

• Each line is the result with a different random split of  the data into two parts
• Every split yields a different estimate
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Leave one out cross-validation 
• For every ! = 1,⋯ , &,
• Train the model on every point except $
• Compute the test error on the hold-out point
• Average over all % points
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Fitted value: ()!(#!)
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Leave one out cross-validation 
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Leave one out cross-validation 
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LOOCV
• Regression
• &'+

(-+): Prediction for the $th sample without using the $th sample

()(/) =
1
%,+0"

/
'+ − &'+ -+

#

• Classification
• &'+

(-+): Prediction for the $th sample without using the $-th sample

()(/) =
1
%,+0"

/
. 1!2(1!"!



Back to our example
• Estimate miles per gallon (mpg) from engine horsepower
• LOOCV curve vs. random splitting

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r



!-fold cross-validation
• Split the data into ' subsets/folds
• For every ! = 1,⋯ , '
• Train the model on every fold except the $-th fold
• Compute the test error on the $-th fold
• Average the test errors



























!-fold cross-validation
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!-fold cross-validation
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LOOCV vs. !-fold cross-validation
• Estimate miles per gallon (mpg) from engine horsepower
• The LOOCV error curve vs. ten-fold cross-validation error curve
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LOOCV vs. !-fold cross-validation
LOOCV
• Gives approximately unbiased estimates of  the test error, as each training 

dataset contains & − 1 observations
• Average of  & fitted models, each of  which is trained on an almost 

identical set of  observations
'-fold cross-validation
• Each training dataset contains & − !

" observations 

• Average of  ' fitted models that are less correlated with each other 
(overlapping training observations are & − #!

" )

• Rule of  thumb: Use ' = 5 or ' = 10



Lecture plan
• Bootstrap



Cross-validation vs. Bootstrap
• Cross-validation: Provide the test error with an independent validation set
• Bootstrap: Provide the standard error of  model estimates



Example
• Investing in two assets: suppose + and , are the 

returns of  two assets
• These returns are observed every day: 
(.$, /$),⋯ , (.! , /!)



Example
• A fixed amount of  money to invest: 1	fraction on + and 1 − 1 fraction on ,. 

Expected return: 1+ + 1 − 1 ,
• Minimize variance: Solve 1 from the first order derivative %	'() *+, $-* .

%	* = 0 
(exercise)

• Optimum: /!"-012(+,.)
/#",/!"-#012(+,.)

, 4+# is variance of  +, 4.# is variance of  ,, Cov(+, ,) 
is covariance between + and ,
• Can approximate these quantities with empirical data

81 = 84.# −	 9Cov(+, ,)
84+# + 84.# − 2 9Cov(+, ,)



Resampling
• Suppose we compute the estimate 81 = 0.6. Do we have some 

confidence about this? E.g., if  we resample the observations, 
would we get a wildly different !" (say 0.1)?

•Here we have the joint distribution &'(), +), let’s resample the - 
observations



Resample the ", $
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Thought experiment
• Estimate 81 from each sample
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Thought experiment
• Standard error of  81 is approximated by the standard deviation of  
81($), 81(#), 81(6), 81(7), …
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Bootstrap
• In reality, we cannot resample the data. However, we can use the training 

data set to approximate the joint distribution of  + and ,
• Bootstrap: Resample the data by drawing & samples with replacement 

(meaning that we allow repetitions in them) from the actual 
observations



Bootstrap

2.8 5.3 3 
1.1 2.1 2 
2.4 4.3 1 

Y X Obs 

2.8 5.3 3 
2.4 4.3 1 
2.8 5.3 3 

Y X Obs 

2.4 4.3 1 
2.8 5.3 3 
1.1 2.1 2 

Y X Obs 

2.4 4.3 1 
1.1 2.1 2 
1.1 2.1 2 

Y X Obs 
Original Data (Z) 

1*Z

2*Z

Z *B

1*α̂

2*α̂

α̂*B

















A fixed amount of  investment: !	on # and 
1 − ! on &

 Estimate standard error

'! = ')!" −	 *Cov(#, &)
')#" + ')!" − 2 *Cov(#, &)

Use standard error of  &/∗", &/∗#, ⋯ , &/∗; 
to approximate standard error of  &/



Bootstrap vs. resampling from the true distribution 
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Quiz
• In bootstrap, how large is the resampled set?

• How many distinct samples are there in the resampled set (in 
expectation)?



Lecture plan
• Subset selection



Example
Predict whether customers default on their credit card debt with 11 features:
• Income: Income in $1,000’s
• Limit: Credit limit
• Rating: Credit rating
• Cards: Number of  credit cards
• Age: Age in years
• Education: Number of  years of  education
• Gender: A factor with levels Male and Female
• Student: A factor with levels No and Yes indicating the individual was a student
• Married: A factor with levels No and Yes indicating whether the individual was married
• Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the 

individual's ethnicity
• Balance: Average credit card balance in $



Subset selection 
• What if  not all of  the features are useful? How would we select a subset 

of  them (say ')
• Naïve solution: Compare all models with ' predictors (and choose one 

with smallest RSS)
• Recall that 4 is the number of  predictors (5 ≤ 4)
• There are 

4
5 = <!

>! <-> ! possible ways of  choosing 5 predictors
• Doing this for every possible combination is too slow



Example
• Best model for a fixed number of  predictors

• Both RSS and ?# improve as we increase ': Three features suffices
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Best subset selection
• How could we find this best subset among 2" options?

• Cross-validation is one approach to estimate test error, but we still need 
to enumerate 2" subsets, which are exponential in '



Forward stepwise selection
• Step 1: No features (fit one model)

• Step 2: Select the best model with one feature (fit 8 models)

• Step 3: Given the model with one feature, select the best model with two features (fit 8 − 1 models)

• Step 4: Given the model with two features, select the best model with three features (fit 8 − 2 models)

• …

• In each step, best is defined as having smallest RSS / MSE / highest =!

• Select a single best model with the optimal number of  predictors using cross-validation



Forward stepwise selection
• Step 1: No features (fit one model)

• Step 2: Select the best model with one feature (fit 8 models)

• Step 3: Given the model with one feature, select the best model with two features (fit 8 − 1 models)

• Step 4: Given the model with two features, select the best model with three features (fit 8 − 2 models)

• …

Fit 1 + 8 + 8 − 1 +⋯+ 1 = 1 + ∑"#$%&' 8 − B = 1 + % %('
!  models in total

• Much fewer than 
8
B  (exhaustive enumeration)



Summary: stepwise selection
Forward stepwise selection
• Start with a model with no predictors
• Add predictors to the model one-at-a-time

• Fit 1 + ∑"CDE-$ A − ' = 1 + E E,$
#  models: Much fewer than 

A
'

Backward stepwise selection is similar but in the reverse direction
• Start with a model with A predictors
• Remove the least useful feature, one at a time

Fit 1 + E E,$
#  models


