Supervised Machine Learning and Learning Theory

Lecture 6: Cross-validation, bootstrap, and subset selection

September 24, 2024

Warm-up questions

- What's the difference between the logistic function and logistic loss?
- How could we extend the logit model to multi-class classification?
- What is the mixture of Gaussians model?
- What's the difference between LDA and QDA?
- Why does QDA have a quadratic decision boundary?

Cross validation

- Goal: Using the training dataset alone, find out the test error as closely as possible
- A first attempt: Randomly split the data in two parts; Train the method in the first part, compute the error on the second part

• Issue: loses half the data samples, and the split has a lot of randomness

Example

- Estimate miles per gallon (mpg) from engine horsepower
 - Auto data: horsepower, gas mileage, and other information for 392 vehicles
- Linear model

$$mpg = \beta_0 + \beta_1 horsepower$$

• Polynomials

$$mpg = \beta_0 + \beta_1 horsepower + \beta_2 horsepower^2$$

$$mpg = \beta_0 + \beta_1 horsepower + \beta_2 horsepower^2 + \beta_3 horsepower^3$$

• Which polynomial is the right relationship? Partition 392 samples into two sets with equal size; one is the training dataset and the other one is the validation dataset

...

Example

• Estimate miles per gallon (mpg) from engine horsepower

- Each line is the result with a different random split of the data into two parts
- Every split yields a **different** estimate

- For every $i = 1, \cdots, n$,
 - Train the model on every point except i
 - Compute the test error on the hold-out point
 - Average over all *n* points

LOOCV

- Regression
 - $\hat{y}_i^{(-i)}$: Prediction for the *i*th sample without using the *i*th sample

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i^{(-i)} \right)^2$$

- Classification
 - $\hat{y}_i^{(-i)}$: Prediction for the *i*th sample without using the *i*-th sample

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[y_i \neq \hat{y}_i^{(-i)}\right]}$$

Back to our example

- Estimate miles per gallon (mpg) from engine horsepower
- LOOCV curve vs. random splitting

- Split the data into k subsets/folds
- For every $i = 1, \cdots, k$
 - Train the model on every fold except the *i*-th fold
 - Compute the test error on the *i*-th fold
 - Average the test errors

LOOCV vs. k-fold cross-validation

- Estimate miles per gallon (mpg) from engine horsepower
- The LOOCV error curve vs. ten-fold cross-validation error curve

LOOCV vs. k-fold cross-validation

LOOCV

- Gives approximately unbiased estimates of the test error, as each training dataset contains n 1 observations
- Average of *n* fitted models, each of which is trained on an almost identical set of observations

- Each training dataset contains $n \frac{n}{k}$ observations
- Average of k fitted models that are less correlated with each other (overlapping training observations are $n \frac{2n}{k}$)
- Rule of thumb: Use k = 5 or k = 10

• Bootstrap

Cross-validation vs. Bootstrap

- Cross-validation: Provide the test error with an independent validation set
- Bootstrap: Provide the standard error of model estimates

Residuals :					
Min	1Q Median	1 3Q	Max		
-15.594 -2	.730 -0.518	1.777	26.199		
Coefficients	3:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.646e+01	5.103e+00	7.144	3.28e-12	***
crim	-1.080e-01	3.286e-02	-3.287	0.001087	**
zn	4.642e-02	1.373e-02	3.382	0.000778	***
indus	2.056e-02	6.150e-02	0.334	0.738288	
chas	2.687e+00	8.616e-01	3.118	0.001925	**
nox	-1.777e+01	3.820e+00	-4.651	4.25e-06	***
rm	3.810e+00	4.179e-01	9.116	< 2e-16	***
age	6.922e-04	1.321e-02	0.052	0.958229	
dis	-1.476e+00	1.995e-01	-7.398	6.01e-13	***
rad	3.060e-01	6.635e-02	4.613	5.07e-06	***
tax	-1.233e-02	3.761e-03	-3.280	0.001112	**
ptratio	-9.527e-01	1.308e-01	-7.283	1.31e-12	***
black	9.312e-03	2.686e-03	3.467	0.000573	***
lstat	-5.248e-01	5.072e-02	-10.347	< 2e-16	***
Signif. code	es: 0 '***'	0.001 '**	, 0.01 (* 0.05 '	. ' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

Example

- Investing in two assets: suppose X and Y are the returns of two assets
- These returns are observed every day: $(x_1, y_1), \dots, (x_n, y_n)$

Example

- A fixed amount of money to invest: α fraction on X and 1α fraction on Y. Expected return: $\alpha X + (1 - \alpha)Y$
- Minimize variance: Solve α from the first order derivative $\frac{\partial \operatorname{Var}(\alpha X + (1-\alpha)Y)}{\partial \alpha} = 0$ (exercise)
- Optimum: $\frac{\sigma_Y^2 \text{Cov}(X,Y)}{\sigma_X^2 + \sigma_Y^2 2\text{Cov}(X,Y)}$, σ_X^2 is variance of X, σ_Y^2 is variance of Y, Cov(X,Y) is covariance between X and Y
- Can approximate these quantities with empirical data

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\text{Cov}}(X, Y)}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\widehat{\text{Cov}}(X, Y)}$$

Resampling

- Suppose we compute the estimate $\hat{\alpha} = 0.6$. Do we have some confidence about this? E.g., if we resample the observations, would we get a wildly different $\hat{\alpha}$ (say 0.1)?
- Here we have the joint distribution Pr(X, Y), let's resample the n observations

Resample the *X*, *Y*

Resample *n* observations

Thought experiment

• Estimate $\hat{\alpha}$ from each sample

Thought experiment

• Standard error of $\hat{\alpha}$ is approximated by the standard deviation of $\hat{\alpha}^{(1)}, \hat{\alpha}^{(2)}, \hat{\alpha}^{(3)}, \hat{\alpha}^{(4)}, \dots$

Bootstrap

- In reality, we cannot resample the data. However, we can use the training data set to approximate the joint distribution of *X* and *Y*
- Bootstrap: Resample the data by drawing *n* samples with replacement (meaning that we allow repetitions in them) from the actual observations

Bootstrap

A fixed amount of investment: α on X and $1 - \alpha$ on Y

Estimate standard error

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \widehat{\text{Cov}}(X, Y)}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\widehat{\text{Cov}}(X, Y)}$$

Use standard error of $\hat{\alpha}^{*1}, \hat{\alpha}^{*2}, \cdots, \hat{\alpha}^{*B}$ to approximate standard error of $\hat{\alpha}$

Bootstrap vs. resampling from the true distribution

Quiz

• In bootstrap, how large is the resampled set?

• How many distinct samples are there in the resampled set (in expectation)?

• Subset selection

Example

Predict whether customers default on their credit card debt with 11 features:

- Income: Income in \$1,000's
- Limit: Credit limit
- Rating: Credit rating
- Cards: Number of credit cards
- Age: Age in years
- Education: Number of years of education
- Gender: A factor with levels Male and Female
- Student: A factor with levels No and Yes indicating the individual was a student
- Married: A factor with levels No and Yes indicating whether the individual was married
- Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the individual's ethnicity
- Balance: Average credit card balance in \$

Subset selection

- What if not all of the features are useful? How would we select a subset of them (say *k*)
- Naïve solution: Compare all models with *k* predictors (and choose one with smallest RSS)
 - Recall that p is the number of predictors ($k \le p$)
 - There are $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ possible ways of choosing k predictors
 - Doing this for every possible combination is too slow

Example

• Best model for a fixed number of predictors

• Both RSS and R^2 improve as we increase k: Three features suffices

Best subset selection

- How could we find this best subset among 2^k options?
- Cross-validation is one approach to estimate test error, but we still need to enumerate 2^k subsets, which are exponential in k

Forward stepwise selection

- Step 1: No features (fit one model)
- Step 2: Select the best model with one feature (fit *p* models)
- Step 3: Given the model with one feature, select the best model with two features (fit p 1 models)
- Step 4: Given the model with two features, select the best model with three features (fit p 2 models)

- In each step, best is defined as having smallest RSS / MSE / highest R^2
- Select a single best model with the optimal number of predictors using cross-validation

...

Forward stepwise selection

- Step 1: No features (fit one model)
- Step 2: Select the best model with one feature (fit *p* models)
- Step 3: Given the model with one feature, select the best model with two features (fit p 1 models)
- Step 4: Given the model with two features, select the best model with three features (fit p 2 models)

Fit
$$1 + p + (p - 1) + \dots + 1 = 1 + \sum_{k=0}^{p-1} (p - k) = 1 + \frac{p(p+1)}{2}$$
 models in total

• Much fewer than $\binom{p}{k}$ (exhaustive enumeration)

• ...

Summary: stepwise selection

Forward stepwise selection

- Start with a model with no predictors
- Add predictors to the model one-at-a-time

• Fit $1 + \sum_{k=0}^{p-1} (p-k) = 1 + \frac{p(p+1)}{2}$ models: Much fewer than $\binom{p}{k}$

Backward stepwise selection is similar but in the reverse direction

- Start with a model with p predictors
- Remove the least useful feature, one at a time

Fit
$$1 + \frac{p(p+1)}{2}$$
 models

