Supervised Machine Learning and Learning Theory

Lecture 6: Cross-validation, bootstrap, and subset selection

September 24, 2024

Warm-up questions

- What's the difference between the logistic function and logistic loss?
- How could we extend the logit model to multi-class classification?
- What is the mixture of Gaussians model?
- What's the difference between LDA and QDA?
- Why does QDA have a quadratic decision boundary?

Cross validation

- Goal: Using the training dataset alone, find out the test error as closely as possible
- A first attempt: Randomly split the data in two parts; Train the method in the first part, compute the error on the second part

• Issue: loses half the data samples, and the split has a lot of randomness

Example

- Estimate miles per gallon (mpg) from engine horsepower
	- Auto data: horsepower, gas mileage, and other information for 392 vehicles
- **Linear model**

$$
mpg = \beta_0 + \beta_1 \text{horsepower}
$$

• **Polynomials**

$$
mpg = \beta_0 + \beta_1 \text{horsepower} + \beta_2 \text{horsepower}^2
$$

$$
mpg = \beta_0 + \beta_1 \text{horsepower} + \beta_2 \text{horsepower}^2 + \beta_3 \text{horsepower}^3
$$

• Which polynomial is the right relationship? Partition 392 samples into two sets with equal size; one is the training dataset and the other one is the validation dataset

…

Example

• Estimate miles per gallon (mpg) from engine horsepower

- Each line is the result with a different random split of the data into two parts
- Every split yields a **different** estimate

- For every $i = 1, \dots, n$,
	- \bullet Train the model on every point except i
	- Compute the test error on the hold-out point
	- Average over all n points

LOOCV

- **Regression**
	- $\hat{y}_i^{(-i)}$: Prediction for the *i*th sample without using the *i*th sample

$$
CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2
$$

- **Classification**
	- $\hat{y}_i^{(-i)}$: Prediction for the *i*th sample without using the *i*-th sample

$$
CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[y_i \neq \hat{y}_i^{(-i)}]}
$$

Back to our example

- Estimate miles per gallon (mpg) from engine horsepower
- LOOCV curve vs. random splitting

- Split the data into k subsets/folds
- For every $i = 1, \dots, k$
	- Train the model on every fold except the *i*-th fold
	- \bullet Compute the test error on the i -th fold
	- Average the test errors

LOOCV vs. k -fold cross-validation

- Estimate miles per gallon (mpg) from engine horsepower
- The LOOCV error curve vs. ten-fold cross-validation error curve

$LOOCV$ vs. k -fold cross-validation

LOOCV

- Gives approximately unbiased estimates of the test error, as each training dataset contains $n - 1$ observations
- Average of n fitted models, each of which is trained on an almost identical set of observations

- Each training dataset contains $n \frac{n}{k}$ \boldsymbol{k} observations
- Average of k fitted models that are less correlated with each other (overlapping training observations are $n - \frac{2n}{k}$ $\frac{2\pi}{k}$
- **Rule of thumb**: Use $k = 5$ or $k = 10$

• **Bootstrap**

Cross-validation vs. Bootstrap

- Cross-validation: Provide the test error with an independent validation set
- Bootstrap: Provide the standard error of model estimates

Residual standard error: 4.745 on 492 degrees of freedom Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < $2.2e-16$

Example

- Investing in two assets: suppose X and Y are the returns of two assets
- These returns are observed every day: $(x_1, y_1), \cdots, (x_n, y_n)$

Jun 2021

Mkt cap

P/E ratio

Div yield

176.05

176.65

175.08

Oper

High

Oct 2021

CDP score

52-wk high

52-wk low

2.87T

29.15

0.50%

Feb 2022

 $A -$

182.94

116.21

Example

- A fixed amount of money to invest: α fraction on X and 1α fraction on Y. Expected return: $\alpha X + (1 - \alpha)Y$
- Minimize variance: Solve α from the first order derivative $\frac{\partial \text{Var}(\alpha X+(1-\alpha)Y)}{\partial \alpha}$ $\partial \alpha$ $= 0$ (exercise)
- Optimum: $\frac{\sigma_Y^2 \text{Cov}(X,Y)}{\sigma_Y^2 + \sigma_Y^2}$ $\frac{\sigma_Y^2 - \text{Cov}(X,Y)}{\sigma_X^2 + \sigma_Y^2 - 2\text{Cov}(X,Y)}$, σ_X^2 is variance of X, σ_Y^2 is variance of Y, Cov(X, Y) is covariance between X and Y
- Can approximate these quantities with empirical data $\hat{\alpha} =$ $\hat{\sigma}_Y^2 - \widehat{\mathrm{Cov}}(X, Y)$ $\widehat{\sigma}_X^2 + \widehat{\sigma}_Y^2 - 2\widehat{\mathrm{Cov}}(X,Y)$

Resampling

- Suppose we compute the estimate $\hat{\alpha} = 0.6$. Do we have some confidence about this? E.g., if we resample the observations, would we get a wildly different $\hat{\alpha}$ (say 0.1)?
- Here we have the joint distribution $Pr(X, Y)$, let's resample the n observations

Resample the X, Y

Resample *n* observations

Thought experiment

• Estimate $\hat{\alpha}$ from each sample

Thought experiment

• Standard error of $\hat{\alpha}$ is approximated by the standard deviation of $\widehat{\alpha}^{(1)}, \widehat{\alpha}^{(2)}, \widehat{\alpha}^{(3)}, \widehat{\alpha}^{(4)}, ...$

Bootstrap

- In reality, we cannot resample the data. However, we can use the training data set to approximate the joint distribution of X and Y
- **Bootstrap**: Resample the data by drawing *n* samples with replacement **(meaning that we allow repetitions in them)** from the actual observations

Bootstrap

A fixed amount of investment: α on X and $1 - \alpha$ on Y

Estimate standard error

$$
\hat{\alpha} = \frac{\hat{\sigma}_{Y}^{2} - \widehat{\text{Cov}}(X, Y)}{\hat{\sigma}_{X}^{2} + \hat{\sigma}_{Y}^{2} - 2\widehat{\text{Cov}}(X, Y)}
$$

Use standard error of $\widehat{\alpha}^{*1}$, $\widehat{\alpha}^{*2}$, …, $\widehat{\alpha}^{*B}$ to approximate standard error of $\hat{\alpha}$

Bootstrap vs. resampling from the true distribution

Quiz

• In bootstrap, how large is the resampled set?

• How many distinct samples are there in the resampled set (in expectation)?

• **Subset selection**

Example

Predict whether customers default on their credit card debt with 11 features:

- Income: Income in \$1,000's
- Limit: Credit limit
- Rating: Credit rating
- Cards: Number of credit cards
- Age: Age in years
- Education: Number of years of education
- Gender: A factor with levels Male and Female
- Student: A factor with levels No and Yes indicating the individual was a student
- Married: A factor with levels No and Yes indicating whether the individual was married
- Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the individual's ethnicity
- Balance: Average credit card balance in \$

Subset selection

- What if not all of the features are useful? How would we select a subset of them (say k)
- Naïve solution: Compare all models with k predictors (and choose one with smallest RSS)
	- Recall that p is the number of predictors $(k \leq p)$
	- There are $\begin{pmatrix} p \\ p \end{pmatrix}$ \boldsymbol{k} = $p!$ $k!(p-k)!$ possible ways of choosing k predictors
	- Doing this for every possible combination is too slow

Example

• Best model for a fixed number of predictors

• Both RSS and R^2 improve as we increase k : Three features suffices

Best subset selection

- How could we find this best subset among 2^k options?
- Cross-validation is one approach to estimate test error, but we still need to enumerate 2^k subsets, which are exponential in k

Forward stepwise selection

- Step 1: No features (fit one model)
- Step 2: Select the best model with one feature (fit p models)
- Step 3: Given the model with one feature, select the best model with two features (fit $p-1$ models)
- Step 4: Given the model with two features, select the best model with three features (fit $p-2$ models)

- In each step, best is defined as having smallest RSS / MSE / highest R^2
- Select a single best model with the optimal number of predictors using cross-validation

• …

Forward stepwise selection

- Step 1: No features (fit one model)
- Step 2: Select the best model with one feature (fit p models)
- Step 3: Given the model with one feature, select the best model with two features (fit $p-1$ models)
- Step 4: Given the model with two features, select the best model with three features (fit $p-2$ models)

Fit 1 + p + (p - 1) + ... + 1 = 1 +
$$
\sum_{k=0}^{p-1} (p - k) = 1 + \frac{p(p+1)}{2}
$$
 models in total

• Much fewer than $\binom{p}{k}$ $\binom{P}{k}$ (exhaustive enumeration)

• …

Summary: stepwise selection

Forward stepwise selection

- Start with a model with no predictors
- Add predictors to the model one-at-a-time

• Fit $1 + \sum_{k=0}^{p-1} (p-k) = 1 + \frac{p(p+1)}{2}$ 2 models: Much fewer than $\binom{p}{k}$ \boldsymbol{k}

Backward stepwise selection is similar but in the reverse direction

- Start with a model with p predictors
- Remove the least useful feature, one at a time

Fit
$$
1 + \frac{p(p+1)}{2}
$$
 models

