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Example: Iris dataset
• Pattern recognition: Predict class of  iris plant. There are three classes



Example: Iris dataset
• 50 samples from each of  three class of Iris (versicolor, setosa, virginica)
• Four features: sepal length, sepal width, petal length, petal width



Distribution of  features
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Fit a mixture of  Gaussians to each feature
• Model Pr 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

𝑋 =

𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

𝑌 ∈ {𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}

by a mixture of  multivariate normal 
distribution 𝑁(𝜇!, Σ) with mean 𝜇!, covariance 
matrix Σ
• 𝑁(𝜇! , Σ) denotes a Gaussian distribution



Prediction rule: Use the Bayes rule
• Recall: Pr(𝑌 = 𝑘|𝑋 = 𝑥) is probability of  𝑥 having label 𝑘. LDA 

predicts the label with highest probability
• Bayes rule

Pr 𝑌 = 𝑘|𝑋 = 𝑥 =
𝑃𝑟(𝑌 = 𝑘, 𝑋 = 𝑥)

𝑃𝑟(𝑋 = 𝑥)
=

𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑘 ⋅ 𝑃𝑟(𝑌 = 𝑘)
∑"#$% 𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑖 ⋅ 𝑃𝑟(𝑌 = 𝑖)

• Examples of  conditional probability: Conditioned on the weather is rainy, the 
chance that driving time is extended would higher than if  the weather is sunny



Illustrating 𝜇! in iris dataset

𝜇&'()&* =

𝑠𝑒𝑡𝑜𝑠𝑎	𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑡𝑜𝑠𝑎	𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

• Bar represents average value

• Black dots of  setosa in the box plots



Illustrating Σ in iris dataset
• Σ is the same for 
𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎
• Diagonal entries equal to variance 

of  each feature for all classes: 
Proportional to the width of  the 
box plots
• Off-diagonal entries equal to 

covariance between two features 
for all classes (somewhat like 
correlation coefficients)

• Question: What if  Σ should be 
different for different class?



Linear decision boundaries 
• Prior probability: Pr 𝑌 = 𝑘 = 𝜋!
• Density function: Pr 𝑋 = 𝑥|𝑌 = 𝑘  is multivariate normal 𝑁(𝜇! , Σ), 

where 𝜇! : mean for category 𝑘, Σ: covariance matrix

• The density function for the 𝑘-th class follows the multivariate normal 
distribution:

𝑓! 𝑥 =
1

(2𝜋)
"
# ⋅ det(Σ)

$
#
𝑒%

$
#('%(!)

"*#$('%(!)



Why LDA has linear decision boundaries
• According to Bayes rule: 𝑃𝑟 𝑌 = 𝑘|𝑋 = 𝑥 = +, -#.|0#! ⋅+,(0#!)

∑!"#
$ +, -#.|0#" ⋅+,(0#")

• Take the log on both sides: log Pr 𝑌 = 𝑘|𝑋 = 𝑥 = log Pr 𝑋 = 𝑥|𝑌 = 𝑘 + log[
]

Pr[
]

𝑌 =
𝑘 − log ∑"#$% Pr 𝑋 = 𝑥|𝑌 = 𝑖 ⋅ Pr 𝑌 = 𝑖

• Decision boundary corresponds to log Pr 𝑌 = 𝑘|𝑋 = 𝑥 = log Pr 𝑌 = 𝑙|𝑋 = 𝑥  between class 
𝑘 and class 𝑗

• The third term cancels out. This leaves us with:

log Pr 𝑋 = 𝑥|𝑌 = 𝑘 + log Pr 𝑌 = 𝑘 = log Pr 𝑋 = 𝑥|𝑌 = 𝑙 + log Pr 𝑌 = 𝑙

• Left-hand side is − $
5 𝑥 − 𝜇! 6Σ7$ 𝑥 − 𝜇! + log	𝜋! − log 2𝜋

%
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%
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Why LDA has linear decision boundaries
• Decision boundary given by

log	𝜋! −
1
2
𝜇!+Σ%$𝜇! + 𝑥+Σ%$𝜇! = log	𝜋, −

1
2
𝜇,+Σ%$𝜇, + 𝑥+Σ%$𝜇,

• This is linear in 𝑥:

𝑥-Σ%$ 𝜇! − 𝜇, = log 𝜋, − log 𝜋! +
1
2
𝜇!-Σ%$𝜇! −

1
2
𝜇,-Σ%$𝜇,

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4
−

4
−

2
0

2
4

X1X1

X
2

X
2



LDA decision boundaries for iris dataset 
• Illustration of  linear boundaries 

for separate three classes



Quadratic discriminant analysis
• Model 𝑃 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

𝑋 =

𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

𝑌 ∈ {𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}

by a multivariate normal distribution 𝑁(𝜇!, Σ!) 
with mean 𝜇!, covariance matrix Σ!
• Using a different covariance matrix for each 

class



QDA: Estimating the center 𝜇!
• Estimate the center of  each 

class 𝜇! :

.𝜇! =
1
𝑛!

3
":$!%!

𝑥"

where 𝑛! = #{𝑖: 𝑦" = 𝑘}



QDA: Estimating the covariance Σ!
• Estimate the covariance Σ! 

5Σ! =
1

𝑛! − 1
3
":$!%!

(𝑥"−.𝜇!) ⋅ (𝑥"−.𝜇!)&

where 𝑛! = #{𝑖: 𝑦" = 𝑘}

• Example: Σ'()*'+

setosa



Summary of  QDA
• For each class 𝑘, we model 𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑓!(𝑥) as a multivariate 

normal distribution 𝑁 𝜇! , Σ!  with mean 𝜇! and a different covariance 
matrix Σ!

• We estimate 𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑘  as 𝑁(B𝜇! , CΣ!) and 𝑃𝑟 𝑌 = 𝑘 = B𝜋!

• We apply Bayes rule to obtain 𝑃𝑟 𝑌 = 𝑘 ∣ 𝑋 = 𝑥

𝑃𝑟 𝑌 = 𝑘 ∣ 𝑋 = 𝑥 =
𝑃𝑟	(𝑌 = 𝑘, 𝑋 = 𝑥)

𝑃𝑟	(𝑋 = 𝑥)
=

𝑃𝑟 𝑋 = 𝑥 ∣ 𝑌 = 𝑘 𝑃𝑟	(𝑌 = 𝑘)
∑8𝑃𝑟 𝑋 = 𝑥 ∣ 𝑌 = 𝑗 𝑃𝑟	(𝑌 = 𝑗)

	



Covariance in LDA vs. in QDA
• In LDA, the covariance can also be 

estimated directly as follows:

5Σ = 3
!%,

-
𝑛! − 1
𝑛 − 𝐾

⋅ 5Σ!

where 𝑛! = #{𝑖: 𝑦" = 𝑘}

• CΣ = A%&'(%)%$
A%B

⋅ CΣCDEFCG +
A*&+%,-(.(+%$

A%B
⋅

CΣHDICJKF,FI +
A*,+/,0,-)%$

A%B
⋅ CΣHJILJAJKG



Decision boundaries for QDA are quadratic
• For QDA, with some algebra (similar to our calculation for LDA), let

log 𝑃𝑟 𝑌 = 𝑘 𝑋 = 𝑥 = 𝐶 + V𝛿! 𝑥
 

where 𝛿!(𝑥) = log	𝜋! −
,
.
𝜇!/Σ!0,𝜇! + 𝑥/Σ!0,𝜇! −

,
.
 𝑥/Σ!0,𝑥 −

,
.
log|Σ!| and 𝐶 is a constant

• T𝛿!(𝑥) is quadratic in 𝑥

• Decision boundaries for QDA are quadratic: by setting T𝛿! 𝑥 = T𝛿8(𝑥)

• For LDA, the quadratic terms would have canceled out



Comparison between LDA and QDA
• QDA requires estimating more model parameters, LDA is less flexible but 

has a smaller variance
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Examples: True decision boundaries are linear
• Data generating process: two predictors 𝑋$ and 𝑋#, two classes in 𝑌

𝑋! and 𝑋" are drawn from uncorrelated 
Normal distributions with a different mean 
in each class

Same as Scenario 1, but correlation 
between 𝑋! and 𝑋" is −0.5

𝑋! and 𝑋" are sampled from 𝑡-distribution 



Examples: True decision boundaries are nonlinear
• Data generating process: two predictors 𝑋$ and 𝑋#, two classes in 𝑌

𝑋! and 𝑋"	are draw from Normal distributions. 
First class: correlation between 𝑋! and 𝑋" is 
− 0.5. Second class: correlation is 0.5

𝑋! and 𝑋" are drawn from uncorrelated 
Normal distributions. 𝑌 is sampled from 
logic model using 𝑋!", 𝑋"" and 𝑋!𝑋" 

Same as Scenario 5. 𝑌 is sampled from a 
more complicated nonlinear function 



LDA vs. logistic regression 
• Both LDA and logistic regression produce linear decision boundaries

• Exercise: Why is the decision boundary of  logistic regression linear?
• Recall logistic regression follows the following log ratio:

log
𝑃𝑟 𝑌 = 1 𝑋 = 𝑥
𝑃𝑟 𝑌 = 0 𝑋 = 𝑥

= 𝛽A + 𝛽$𝑥

• The decision boundary is the set of  𝑥 satisfy 𝑃𝑟 𝑌 = 1 𝑋 = 𝑥 = 𝑃𝑟 𝑌 = 0 𝑋 = 𝑥 = 0.5

0 = log 𝑃𝑟 𝑌 = 1 𝑋 = 𝑥 − log 𝑃𝑟 𝑌 = 0 𝑋 = 𝑥 = log
𝑃𝑟 𝑌 = 1 𝑋 = 𝑥
𝑃𝑟 𝑌 = 0 𝑋 = 𝑥

= 𝛽1 + 𝛽,𝑥

This is linear in 𝑥!



LDA vs. logistic regression 
• Estimation approaches are different: generative vs. discriminative

• LDA makes more sense if  the underlying data indeed follows a Gaussian 
distribution (e.g., think of  natural data arising in biology)

• Logistic regression is usually more commonly used in practice



Lecture plan
• Leave-one-out cross-validation
• For selecting between different models



Leave one out cross-validation 














Training data (𝑛 − 1 points)Validation data
Fitted value: D𝑦!

($!)



Leave one out cross-validation 














Training data (𝑛 − 1 points)

Validation data
Fitted value: D𝑦"

($")



Leave one out cross-validation 














Training data (𝑛 − 1 points) Validation data
Fitted value: D𝑦&

($&)



Leave one out cross-validation 
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Fitted value

Estimate cross-validation error



Announcements
• Office hours now also available on Mondays and Wednesdays at WVH 

208!


