Supervised Machine Learning and Learning Theory

Lecture 5: Classification (continued)

September 20, 2024

Example: Iris dataset

• Pattern recognition: Predict class of iris plant. There are three classes

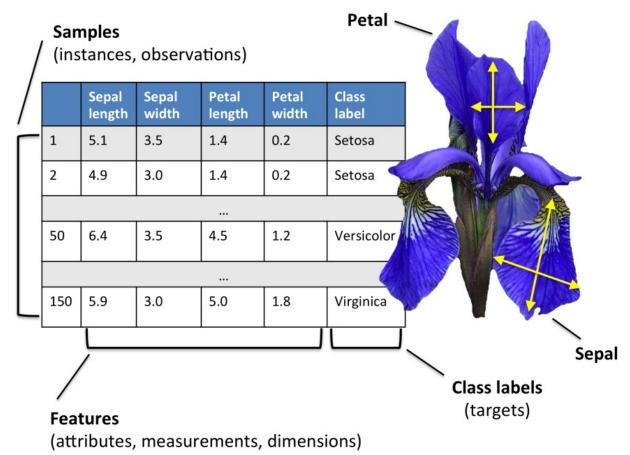
Iris Versicolor

Iris Setosa

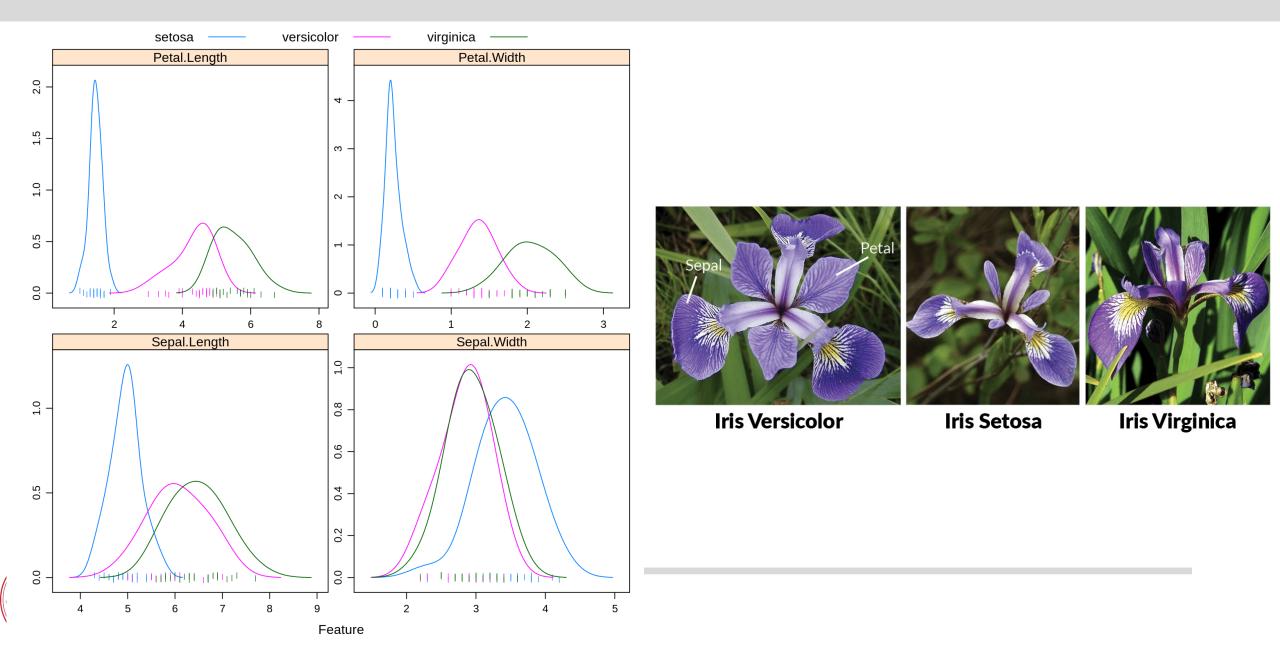
Iris Virginica

Example: Iris dataset

- 50 samples from each of three class of Iris (versicolor, setosa, virginica)
- Four features: sepal length, sepal width, petal length, petal width



Distribution of features



Fit a mixture of Gaussians to each feature

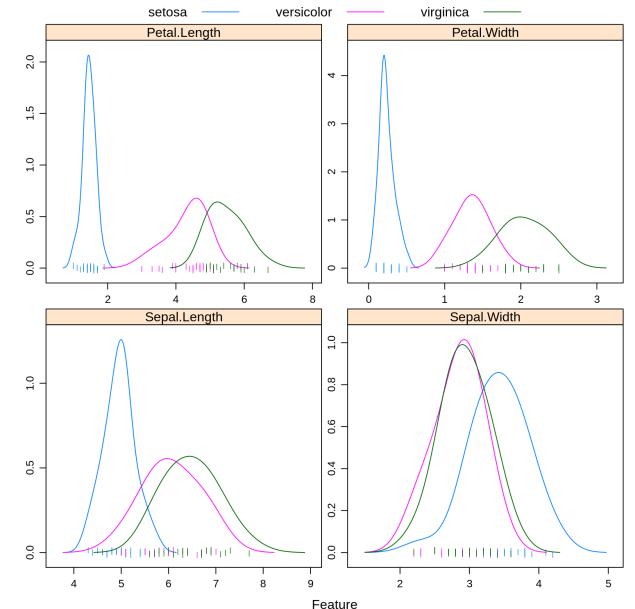
• Model $\Pr[X = x \mid Y = k]$

 $X = \begin{bmatrix} sepal \ length \\ sepal \ width \\ petal \ length \\ petal \ width \end{bmatrix}$

 $Y \in \{versicolor, setosa, virginica\}$

by a mixture of **multivariate normal distribution** $N(\mu_k, \Sigma)$ with mean μ_k , covariance matrix Σ

• $N(\mu_k, \Sigma)$ denotes a Gaussian distribution



Prediction rule: Use the Bayes rule

• Recall: Pr(Y = k | X = x) is probability of x having label k. LDA predicts the label with highest probability

• Bayes rule

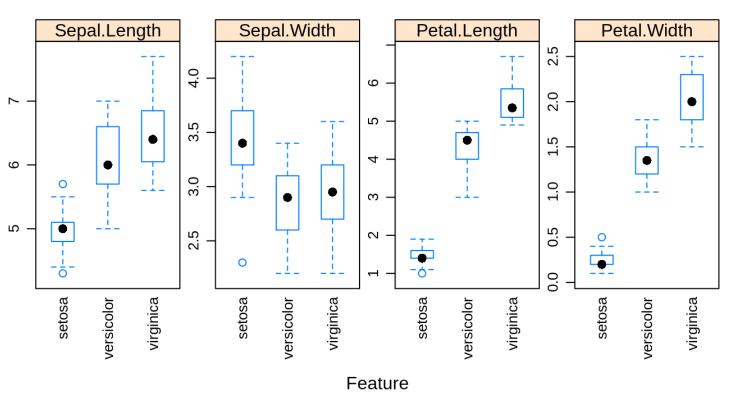
$$\Pr[Y = k | X = x] = \frac{\Pr(Y = k, X = x)}{\Pr(X = x)} = \frac{\Pr(X = x | Y = k) \cdot \Pr(Y = k)}{\sum_{i=1}^{K} \Pr(X = x | Y = i) \cdot \Pr(Y = i)}$$

• Examples of conditional probability: Conditioned on the weather is rainy, the chance that driving time is extended would higher than if the weather is sunny

Illustrating μ_k in iris dataset

$$\mu_{setosa} = \begin{bmatrix} setosa \ sepal \ length \\ \hline setosa \ sepal \ width \\ \hline setosa \ petal \ length \\ \hline \hline setosa \ petal \ width \\ \hline \end{bmatrix}$$

- Bar represents average value
- Black dots of setosa in the box plots



Illustrating Σ in iris dataset

Σ is the same for *versicolor*, *setosa*, *virginica*

- Diagonal entries equal to variance of each feature for all classes: Proportional to the width of the box plots
- Off-diagonal entries equal to covariance between two features for all classes (somewhat like correlation coefficients)

Question: What if Σ should be

different for different class?



Linear decision boundaries

- Prior probability: $\Pr[Y = k] = \pi_k$
- Density function: $\Pr[X = x | Y = k]$ is multivariate normal $N(\mu_k, \Sigma)$, where μ_k : mean for category k, Σ : covariance matrix
- The density function for the *k*-th class follows the multivariate normal distribution:

$$f_k(x) = \frac{1}{(2\pi)^{\frac{p}{2}} \cdot \det(\Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k)}$$

Why LDA has linear decision boundaries

• According to Bayes rule:
$$Pr(Y = k | X = x) = \frac{Pr(X = x | Y = k) \cdot Pr(Y = k)}{\sum_{i=1}^{K} Pr(X = x | Y = i) \cdot Pr(Y = i)}$$

- Take the log on both sides: $\log \Pr[Y = k | X = x] = \log[\Pr[X = x | Y = k]] + \log[\Pr[Y = k]] \log[\sum_{i=1}^{K} \Pr[X = x | Y = i] \cdot \Pr[Y = i]]$
- Decision boundary corresponds to $\log \Pr[Y = k | X = x] = \log \Pr[Y = l | X = x]$ between class k and class j
- The third term cancels out. This leaves us with:

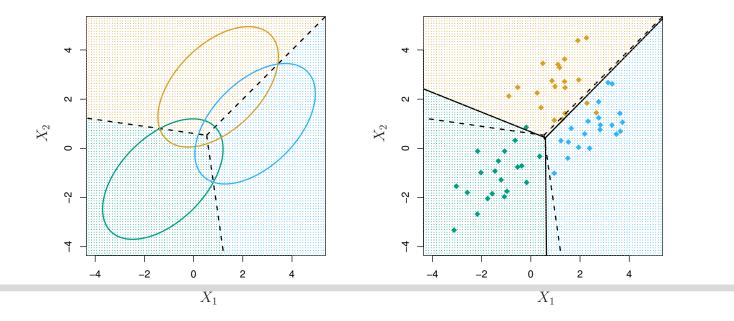
$$\log[\Pr[X = x | Y = k]] + \log[\Pr[Y = k]] = \log[\Pr[X = x | Y = l]] + \log[\Pr[Y = l]]$$

• Left-hand side is $-\frac{1}{2}(x - \mu_k)^{\top} \Sigma^{-1}(x - \mu_k) + \log \pi_k - \log\left((2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{p}{2}}\right)$

Why LDA has linear decision boundaries

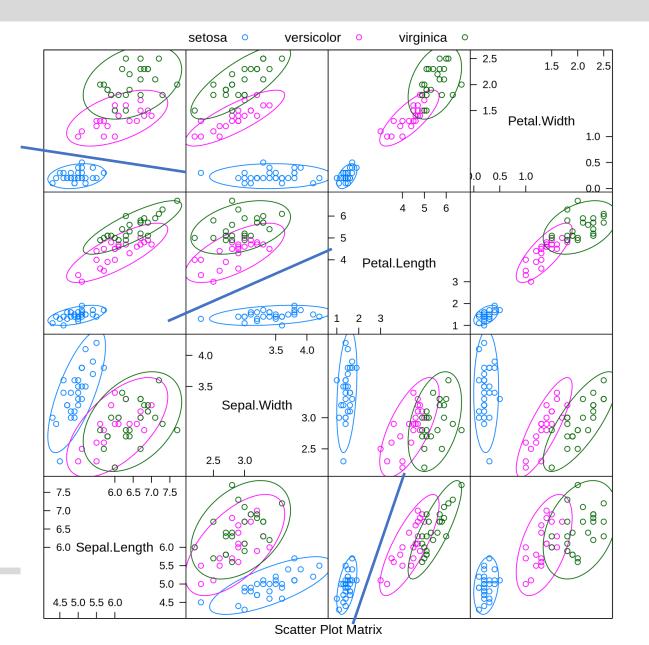
- Decision boundary given by $\log \pi_k - \frac{1}{2}\mu_k^T \Sigma^{-1}\mu_k + x^T \Sigma^{-1}\mu_k = \log \pi_l - \frac{1}{2}\mu_l^T \Sigma^{-1}\mu_l + x^T \Sigma^{-1}\mu_l$
- This is linear in *x*:

$$x^{\mathsf{T}} \Sigma^{-1} (\mu_k - \mu_l) = \log \pi_l - \log \pi_k + \frac{1}{2} \mu_k^{\mathsf{T}} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_l^{\mathsf{T}} \Sigma^{-1} \mu_l$$



LDA decision boundaries for iris dataset

• Illustration of linear boundaries for separate three classes



Quadratic discriminant analysis

2.0

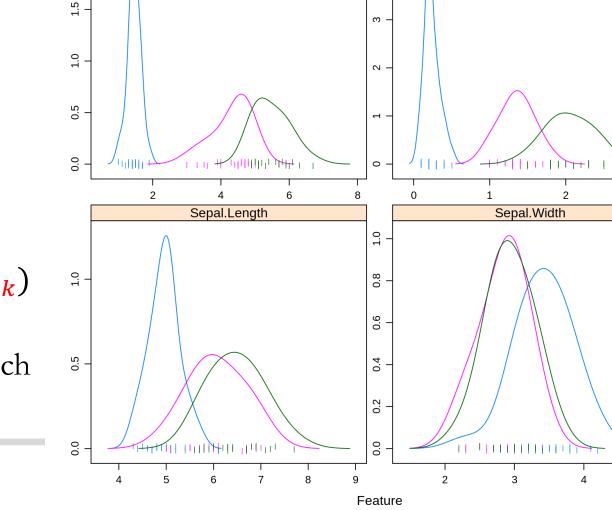
• Model P(X = x | Y = k)

 $X = \begin{bmatrix} sepal \ length \\ sepal \ width \\ petal \ length \\ petal \ width \end{bmatrix}$

 $Y \in \{versicolor, setosa, virginica\}$

by a multivariate normal distribution $N(\mu_k, \Sigma_k)$ with mean μ_k , covariance matrix Σ_k

• Using a different covariance matrix for each class



versicolor

4

setosa

Petal.Length

virginica

Petal.Width

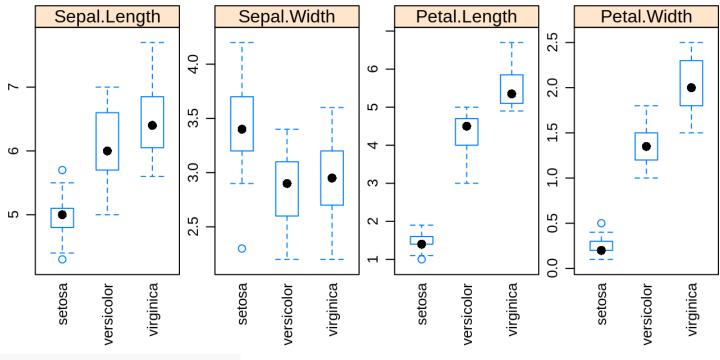
5

QDA: Estimating the center μ_k

Estimate the center of each class μ_k:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

where
$$n_k = #\{i: y_i = k\}$$



Group means:

Feature

##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
## setosa	4.958621	3.420690	1.458621	0.237931
## versicolor	6.063636	2.845455	4.318182	1.354545
## virginica	6.479167	2.937500	5.479167	2.045833

QDA: Estimating the covariance Σ_k

• Estimate the covariance Σ_k

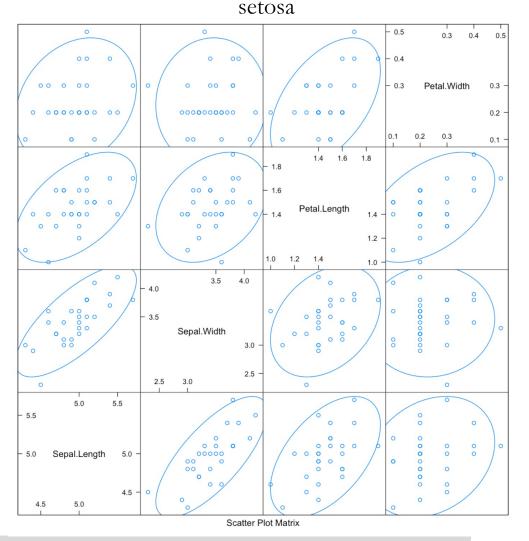
$$\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{k}} = \frac{1}{n_k - 1} \sum_{i: y_i = k} (x_i - \widehat{\mu}_k) \cdot (x_i - \widehat{\mu}_k)^{\mathsf{T}}$$

where $n_k = #\{i: y_i = k\}$

• Example: Σ_{setosa}

iris_trn_setosa <- iris_trn[iris_trn\$Species == "setosa",]
cov(iris_trn_setosa[,c(1:4)])</pre>

##Sepal.LengthSepal.WidthPetal.LengthPetal.Width##Sepal.Length0.1032266010.0951724140.0317980300.007697044##Sepal.Width0.0951724140.1609852220.0251724140.001687192##Petal.Length0.0317980300.0251724140.0353694580.009125616##Petal.Width0.0076970440.0016871920.0091256160.009581281



Summary of QDA

• For each class k, we model $Pr(X = x | Y = k) = f_k(x)$ as a multivariate normal distribution $N(\mu_k, \Sigma_k)$ with mean μ_k and a different covariance matrix Σ_k

• We estimate
$$Pr(X = x | Y = k)$$
 as $N(\hat{\mu}_k, \hat{\Sigma}_k)$ and $Pr(Y = k) = \hat{\pi}_k$

• We apply Bayes rule to obtain Pr(Y = k | X = x)

$$Pr(Y = k \mid X = x) = \frac{Pr(Y = k, X = x)}{Pr(X = x)} = \frac{Pr(X = x \mid Y = k)Pr(Y = k)}{\sum_{j} Pr(X = x \mid Y = j)Pr(Y = j)}$$

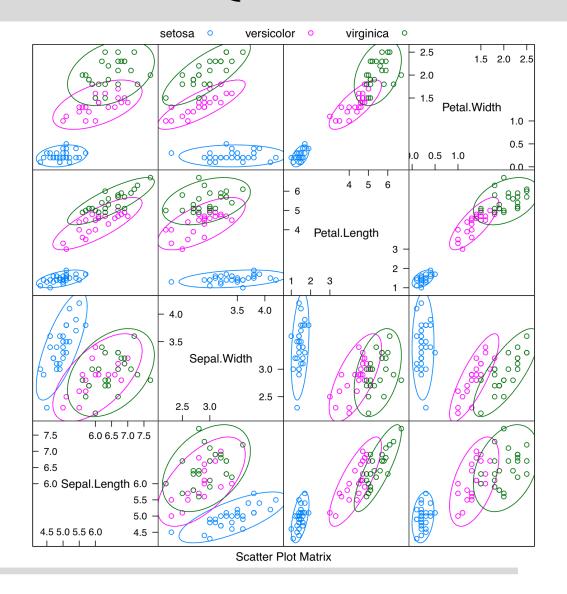
Covariance in LDA vs. in QDA

• In LDA, the covariance can also be estimated directly as follows:

$$\widehat{\Sigma} = \sum_{k=1}^{K} \frac{n_k - 1}{n - K} \cdot \widehat{\Sigma}_k$$

where $n_k = #\{i: y_i = k\}$

•
$$\hat{\Sigma} = \frac{n_{setosa} - 1}{n - 3} \cdot \hat{\Sigma}_{setosa} + \frac{n_{versicolor} - 1}{n - 3} \cdot \hat{\Sigma}_{versicolor} + \frac{n_{virginica} - 1}{n - 3} \cdot \hat{\Sigma}_{virginica}$$



Decision boundaries for QDA are quadratic

• For QDA, with some algebra (similar to our calculation for LDA), let

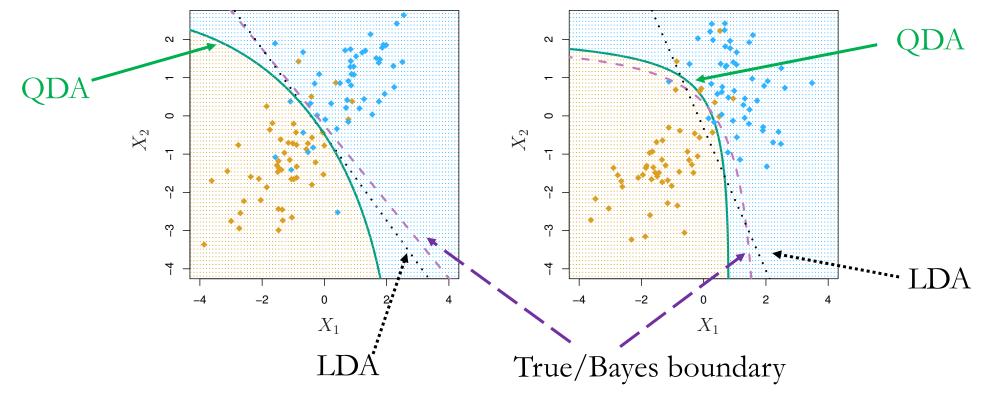
 $\log Pr(Y = k | X = x) = C + \hat{\delta}_k(x)$

where $\delta_k(x) = \log \pi_k - \frac{1}{2}\mu_k^T \Sigma_k^{-1} \mu_k + x^T \Sigma_k^{-1} \mu_k - \frac{1}{2}x^T \Sigma_k^{-1} x - \frac{1}{2}\log|\Sigma_k|$ and C is a constant

- $\hat{\delta}_k(x)$ is quadratic in x
- Decision boundaries for QDA are quadratic: by setting $\hat{\delta}_k(x) = \hat{\delta}_j(x)$
- For LDA, the quadratic terms would have canceled out

Comparison between LDA and QDA

• QDA requires estimating more model parameters, LDA is less flexible but has a smaller variance

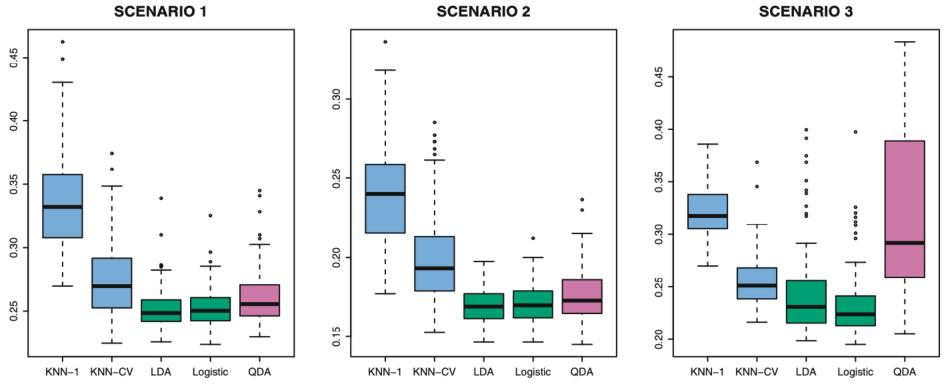


Examples: True decision boundaries are linear

• Data generating process: two predictors X_1 and X_2 , two classes in Y

 X_1 and X_2 are drawn from uncorrelated Normal distributions with a different mean in each class Same as Scenario 1, but correlation between X_1 and X_2 is -0.5

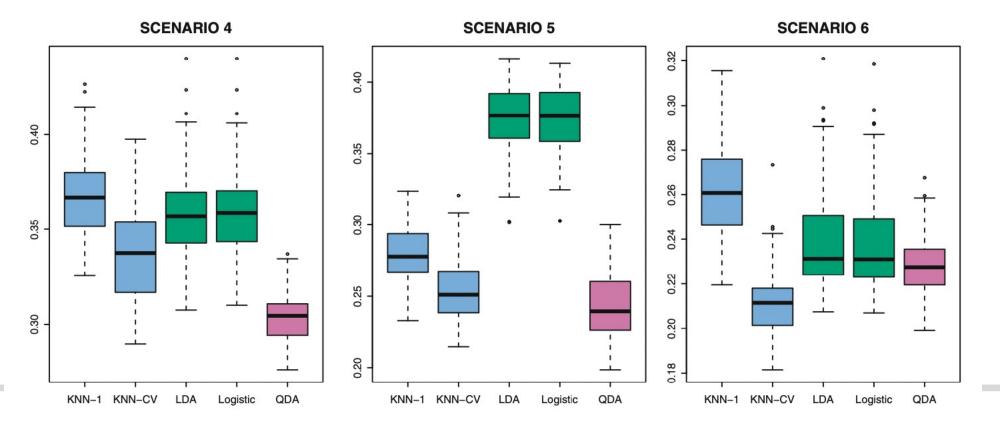
 X_1 and X_2 are sampled from *t*-distribution



Examples: True decision boundaries are nonlinear

• Data generating process: two predictors X_1 and X_2 , two classes in Y

 X_1 and X_2 are draw from Normal distributions. First class: correlation between X_1 and X_2 is - 0.5. Second class: correlation is 0.5 X_1 and X_2 are drawn from uncorrelated Normal distributions. *Y* is sampled from logic model using X_1^2 , X_2^2 and X_1X_2 Same as Scenario 5. *Y* is sampled from a more complicated nonlinear function



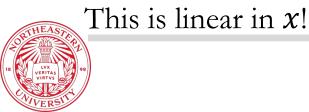
LDA vs. logistic regression

- Both LDA and logistic regression produce linear decision boundaries
- Exercise: Why is the decision boundary of logistic regression linear?
 - Recall logistic regression follows the following log ratio:

$$\log \frac{Pr(Y = 1 | X = x)}{Pr(Y = 0 | X = x)} = \beta_0 + \beta_1 x$$

• The decision boundary is the set of x satisfy Pr(Y = 1|X = x) = Pr(Y = 0|X = x) = 0.5

$$0 = \log[Pr(Y = 1|X = x)] - \log[Pr(Y = 0|X = x)] = \log\frac{Pr(Y = 1|X = x)}{Pr(Y = 0|X = x)} = \beta_0 + \beta_1 x$$



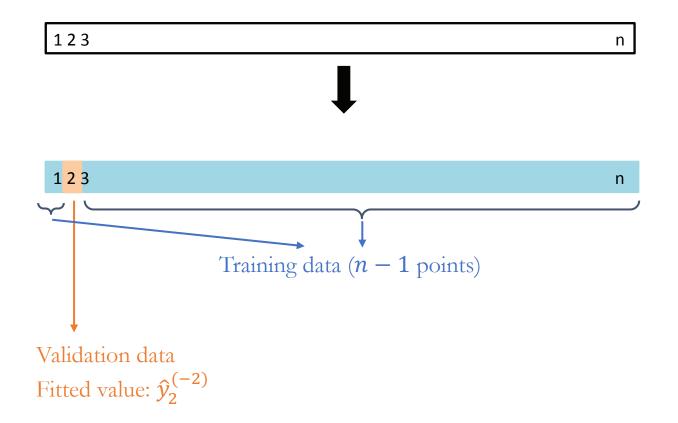
LDA vs. logistic regression

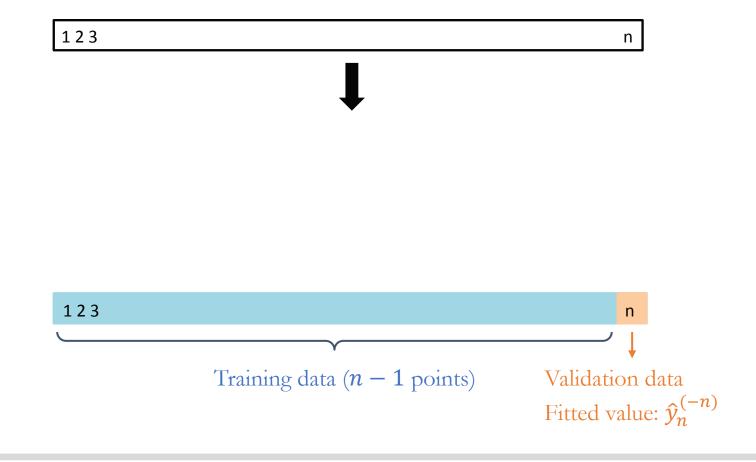
- Estimation approaches are different: generative vs. discriminative
- LDA makes more sense if the underlying data indeed follows a Gaussian distribution (e.g., think of natural data arising in biology)
- Logistic regression is usually more commonly used in practice

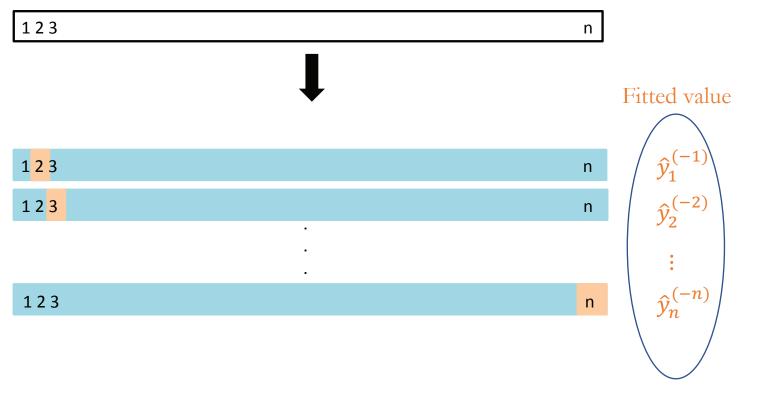
Lecture plan

- Leave-one-out cross-validation
 - For selecting between different models









Estimate cross-validation error

Announcements

• Office hours now also available on Mondays and Wednesdays at WVH 208!

