Supervised Machine Learning and Learning Theory

Lecture 2: Linear Regression, with Some Review of Linear Algebra

September 10, 2024

In-class quiz questions

- Given a data distribution D, a neural network f_W whose parameters are given by W, write down the mathematical definition of the test loss of f_W ?
- Given *n* samples from *D*, denoted as $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, write down the mathematical definition of the training loss of f_W ?
- What is representation learning? Could you name several methods for representation learning?

Matrices and vectors

• Matrices: A rectangular array of numbers

$$A = \begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$$

• Vectors: An array consisting of a single column

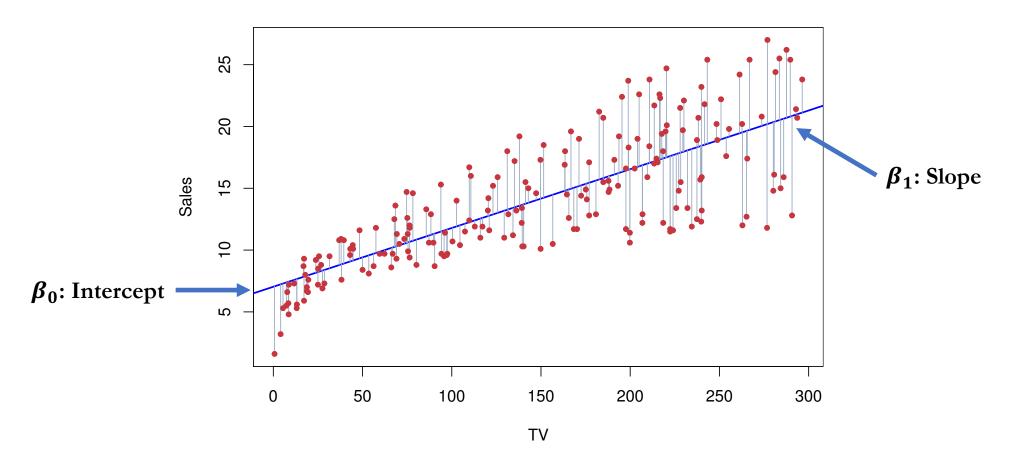
$$a = \begin{bmatrix} a_1 \\ \dots \\ a_n \end{bmatrix}$$

Simple linear regression

- Let us consider the simplest case of a linear regression problem: We are giving a list of one-dimensional features and their corresponding labels. We want to build a regression model to achieve that
 - Examples: Predicting housing values (last Friday), advertising, marketing, etc
- Input: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ (assume we have already done the training/test split)
- Output: a linear model parameterized by β_0 and β_1

Examples of β_0 and β_1

• Fitting a regression model mapping TA ad spending to Sales amount



Setting up the linear model

- Recall the input to the problem: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ (this is the training data)
- Let us set up a predicted label for each sample:

$$\hat{y}_i = \beta_0 + x_i \beta_1,$$
 for $i=1,2,\ldots,n$

• Next, let us set up the mean squared error metric:

$$\hat{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\beta_0 + x_i \beta_1 - y_i)^2$$

Where $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$

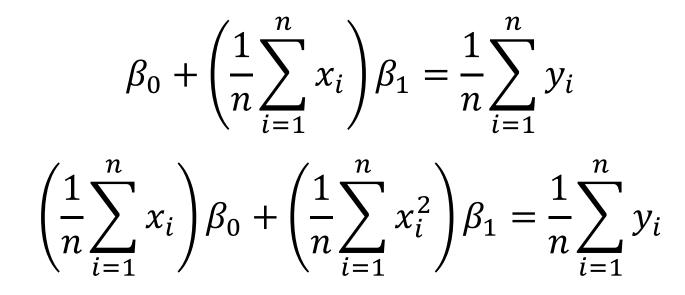
Solving for β_0 and β_1

- Recall that $\hat{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (\beta_0 + x_i \beta_1 y_i)^2$; we would like to minimize the MSE metric
- We're going to set the derivatives of \hat{L} with respect to β_0 , β_1 as zero

$$\frac{\partial \hat{L}(\beta)}{\partial \beta_0} = \frac{2}{n} \sum_{i=1}^n (\beta_0 + x_i \beta_1 - y_i) = 0$$
$$\frac{\partial \hat{L}(\beta)}{\partial \beta_1} = \frac{2}{n} \sum_{i=1}^n x_i (\beta_0 + x_i \beta_1 - y_i) = 0$$

Solving for β_0 and β_1

• We can re-arrange the derivatives to be zero as follows



Final solution

• This is a two-by-two linear system, which can be solved explicitly

$$\beta_{0} = \frac{\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \cdot \left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right)}{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}}$$
$$\beta_{1} = \frac{\left(1 - \frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \cdot \left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right)}{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}}$$

Takeaways

• In order to have a valid solution, we need that

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}-\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}\neq0$$

This is true as long as the x_i 's are not all the same!

- We can use the explicit expressions of β_0, β_1 to derive confidence intervals
 - This is a bit advanced, but the high-level idea is we assume the x_i 's are Gaussian, from which we could derive the distribution of β_0 , β_1

Summary of simple linear regression

• After solving $\hat{\beta}_0, \hat{\beta}_1$, we could use the estimated coefficients to make predictions on unseen regions

$$\hat{y} = \hat{\beta}_1 x + \hat{\beta}_0$$

Evaluation metrics

• R^2 statistic measures the proportion of variance explained

RSS (Residual sum of squares) =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

TSS (Total sum of squares) =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$
, where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

 R^2 always takes on a value between 0 and 1

Evaluation metrics

• **Correlation** between two random variables is another measure of linear relationship between *X* and *Y*

$$Cor(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}, \text{ where } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

- **Example:** in the linear regression example, we may take the uniform distribution of $y_1, y_2, ..., y_n$ as the 1st random variable, and the uniform distribution of $\hat{y}_1, \hat{y}_2, ..., \hat{y}_n$ as the 2nd random variable
- Example: If X and Y are independent, then Cor(X, Y) = 0
 - Recall $E[X \cdot Y] = E[X] \cdot E[Y]$

• Multiple linear regression

Multiple linear regression

- Multiple features
- Quantitative inputs
- Transformations of quantitative inputs: log, square-root, or square
- Basis expansion: $x_2 = x_1^2$, $x_3 = x_1^3$
- Numeric coding of qualitative inputs
- Interactions between inputs: $x_3 = x_1 \cdot x_2$

Setting up the problem

- We're giving a training set $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. Let us assume that each x has p features in total
- We want to learn a linear regression model to map x's to y's: the linear model has p + 1 variables in total, $\beta_0, \beta_1, \dots, \beta_p$

Let us introduce several matrix notations

• Feature matrix (note that we have added a column of ones):

$$X = \begin{bmatrix} 1 & x_{1,1}, \dots, x_{1,p} \\ 1 & x_{2,1}, \dots, x_{2,p} \\ \vdots & \vdots \\ 1 & x_{n,1}, \dots, x_{n,p} \end{bmatrix}$$

• Label vector:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Exercise: what is the dimension of X, y, β , respectively?

• Predicted label:

 $\hat{y}_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p}$, for $i = 1, 2, \dots, n$

More matrix notations

• Let us stack the variables we need to estimate together

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{bmatrix}$$

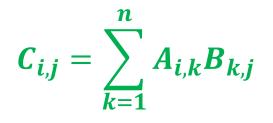
• Using matrix multiplication rule, we shall verify that

$$\hat{y} = X\beta$$

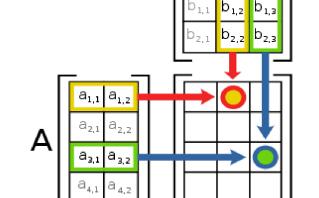
Where $\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$

One slide about matrix multiplication

- Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, their product $C = AB \in \mathbb{R}^{m \times p}$
- Number of columns of A must be equal to the number of rows of B
- Compute the product C = AB using



• An illustration



• Exercise: multiply
$$A = \begin{bmatrix} 1,2 \end{bmatrix}$$
 with $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

Start with the one-dimensional case

• Fitting a line with coefficient $\beta_1 \in \mathbb{R}$ and intercept $\beta_0 \in \mathbb{R}$

$$\widehat{y}_i = \beta_0 + \beta_1 x_i$$

• Recall matrix notation:
$$\hat{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

• **Exercise:** verify that $\hat{y} = X\beta$

Move to the multi-dimensional case

- Fitting a hyperplane with coefficients $\beta_1, \beta_2, \dots, \beta_p$ and intercept β_0
- **Exercise:** First verify that the predicted labels are $\hat{y} = X\beta$
- Recall that MSE metric:

$$\widehat{L}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (x_i^{\mathsf{T}} \boldsymbol{\beta} - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2 = \frac{1}{n} (y - X\boldsymbol{\beta})^T (y - X\boldsymbol{\beta})$$

- We'll set the derivatives to zero: $\frac{\partial \hat{L}(\beta)}{\partial \beta_0}$, $\frac{\partial \hat{L}(\beta)}{\partial \beta_1}$, ..., $\frac{\partial \hat{L}(\beta)}{\partial \beta_p}$
- There's an easier way to write this in the multi-dimensional case

Defining the gradient

- **Definition:** let $f: \mathbb{R}^d \to \mathbb{R}$ be a multi-dimensional function, which takes a vector of d variables X as input, and outputs a real value y = f(X)
- Suppose f is differentiable at every coordinate, then, the gradient of f, denoted as ∇f , is defined as $r\partial f(X)$

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial X_1}, \\ \frac{\partial f(X)}{\partial X_2}, \\ \frac{\partial f(X)}{\partial X_d} \end{bmatrix}$$

Back to estimating the coefficients

• The condition for setting all of the derivatives of $\hat{L}(\beta)$ to zero amounts to the following

$$\nabla \widehat{L}(\beta) = 0$$

• Claim:

$$\nabla \hat{L}(\beta) = \frac{2}{n} X^{\mathsf{T}} (X\beta - y)$$

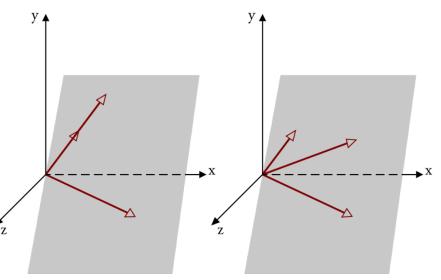
- Exercise: Verify the dimension of the right-hand side
- Now, we want to set the gradient as zero
- This means we have $X^{\top}(X\beta y) = 0$
- This leads to the following equation for β

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

This is called the Ordinary Least Squares (OLS) estimator

Takeaways

- We want $X^{\mathsf{T}}X$ to be invertible (what does it mean?)
- Let's first explain linear combinations: Given a set of vectors $S = \{x_1, \dots, x_n\}$ where $x_i \in \mathbb{R}^n$, a linear combination of S is $\sum_{i=1}^n a_i x_i \text{ where } a_i \in \mathbb{R}$
 - The vector span of S, denoted as Span(S), is the set of all linear combinations of the elements of S



Linearly independent vs. not linearly independent

• A set of vectors $S = \{x_1, x_2, ..., x_n\}$ is **linearly independent** if the following holds

$$\sum_{i=1}^{n} a_i x_i = 0$$
 if and only if $a_1 = a_2 = \cdots = a_n = 0$

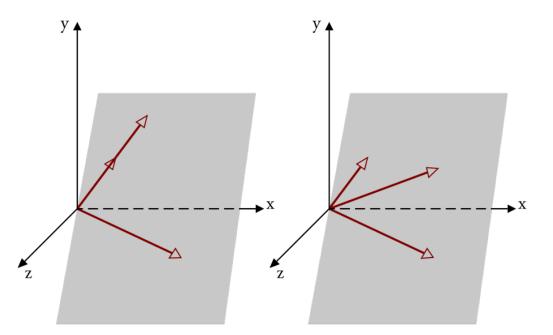
• On the other hand, S is not linearly independent if there exists $a_1, a_2, ..., a_n$ that are not all zeros such that

$$\sum_{i=1}^n a_i x_i = 0$$

• Back to the previous example, which one is linearly independent and which one is not?

Examples of linearly independent vectors

- Left: The two vectors are linearly independent
- Right: The three vectors are not linearly independent



Rank

• Rank: For $A \in \mathbb{R}^{m \times n}$, the rank of A is the maximum number of linearly independent columns or rows

• Exercises (after class)

$$rank(A) \le \min(m, n)$$

$$rank(A) = rank(A^{\top})$$

$$rank(AB) \le \min(rank(A), rank(B))$$

$$rank(A + B) \le rank(A) + rank(B)$$

Metrics

• Mean squared error (MSE) is the average amount that the response will deviate from the true regression line

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Normalized MSE: Divide MSE by $\frac{1}{n} \sum_{i=1}^{n} y_i^2$
- Root mean squared error: $RMSE = \sqrt{MSE}$
 - RMSE measures the average deviation between \hat{y}_i and y_i

•
$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

- \hat{y}_i is the fitted y_i , for example, in the linear model, $\hat{y}_i = \hat{\beta}_0 + x_i \cdot \hat{\beta}_1$
- More generally, let \hat{f} be the fitted function (e.g., quadratic), and then $\hat{y}_i = \hat{f}(x_i)$
- $0 \le R^2 \le 1$

Setting confidence intervals

- Are the estimated coefficients statistically significant?
- **Construct confidence intervals:** With 95% probability, the range will contain the true value of the parameter

$$\beta_0 \in \left[\hat{\beta}_0 - 2 \cdot \operatorname{SE}(\hat{\beta}_0), \hat{\beta}_0 + 2 \cdot \operatorname{SE}(\hat{\beta}_0)\right]$$

...
$$\beta_p \in \left[\hat{\beta}_p - 2 \cdot \operatorname{SE}(\hat{\beta}_p), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_p)\right]$$

Statsmodel package provides estimated coefficients and standard errors
https://www.statsmodels.org/stable/index.html

Hypothesis testing and significance values

- Null hypothesis: $\beta_1 = 0$, there is no relationship between X and Y
- Expected outcome: $\beta_1 \neq 0$, there is relationship between X and Y
- **T-statistic**: number of standard errors between $\hat{\beta}_1$ and **0**

$$t = \frac{\hat{\beta}_1}{\operatorname{SE}(\hat{\beta}_1)}$$

• *p*-value: probability of observing at least |t| under null hypothesis

Announcements

- Office hour: 12:30 PM 1:30 PM, 177 Huntington Ave FL 22, Room 2211
 - Also accessible via Zoom, see link on Canvas
- 1st homework will be released on Friday
- TAs: Deb Roy, Michael Zhang

