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In-class quiz questions
• Given a data distribution 𝐷, a neural network 𝑓! whose parameters are 

given by 𝑊, write down the mathematical definition of  the test loss of  
𝑓!?

• Given 𝑛 samples from 𝐷, denoted as 𝑥", 𝑦" , 𝑥#, 𝑦# , … , (𝑥$ , 𝑦$), 
write down the mathematical definition of  the training loss of  𝑓!?

• What is representation learning? Could you name several methods for 
representation learning?



Matrices and vectors
• Matrices: A rectangular array of  numbers

𝐴 =
𝑎!,! … 𝑎!,#
… … …
𝑎$,! … 𝑎$,#

• Vectors: An array consisting of  a single column

𝑎 =
𝑎!
…
𝑎#



Simple linear regression
• Let us consider the simplest case of  a linear regression problem: We are 

giving a list of  one-dimensional features and their corresponding labels. 
We want to build a regression model to achieve that
• Examples: Predicting housing values (last Friday), advertising, marketing, etc

• Input: 𝑥", 𝑦" , 𝑥#, 𝑦# , … , (𝑥$ , 𝑦$) (assume we have already done the 
training/test split)
• Output: a linear model parameterized by 𝛽% and 𝛽"



Examples of  𝛽! and 𝛽"
• Fitting a regression model mapping TA ad spending to Sales amount
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Setting up the linear model
• Recall the input to the problem: 𝑥", 𝑦" , 𝑥#, 𝑦# , … , (𝑥$ , 𝑦$) (this is the 

training data)
• Let us set up a predicted label for each sample:

,𝑦& = 𝛽% + 𝑥&𝛽", for 𝑖 = 1, 2, … , 𝑛
• Next, let us set up the mean squared error metric:

2𝐿 𝛽 =
1
𝑛
4
&'"

$

,𝑦& − 𝑦& # =
1
𝑛
4
&'"

$

𝛽% + 𝑥&𝛽" − 𝑦& #

Where 𝛽 = 𝛽%
𝛽"



Solving for 𝛽! and 𝛽"
• Recall that 2𝐿 𝛽 = "

$
∑&'"$ 𝛽% + 𝑥&𝛽" − 𝑦& #; we would like to minimize 

the MSE metric
• We’re going to set the derivatives of  2𝐿 with respect to 𝛽%, 𝛽" as zero

𝜕2𝐿(𝛽)
𝜕𝛽%

=
2
𝑛
4

&'"

$
𝛽% + 𝑥&𝛽" − 𝑦& = 0

𝜕2𝐿(𝛽)
𝜕𝛽"

=
2
𝑛
4
&'"

$

𝑥& 𝛽% + 𝑥&𝛽" − 𝑦& = 0



Solving for 𝛽! and 𝛽"
• We can re-arrange the derivatives to be zero as follows

𝛽% +
1
𝑛
4
&'"

$

𝑥& 𝛽" =
1
𝑛
4
&'"

$

𝑦&

1
𝑛
4
&'"

$

𝑥& 𝛽% +
1
𝑛
4
&'"

$

𝑥&# 𝛽" =
1
𝑛
4
&'"

$

𝑦&



Final solution
• This is a two-by-two linear system, which can be solved explicitly

𝛽% =
1
𝑛∑&'"

$ 𝑥&# −
1
𝑛∑&'"

$ 𝑥& ⋅ 1
𝑛 ∑&'"

$ 𝑦&
1
𝑛∑&'"

$ 𝑥&# −
1
𝑛∑&'"

$ 𝑥&
#

𝛽" =
1 − 1

𝑛∑&'"
$ 𝑥& ⋅ 1

𝑛 ∑&'"
$ 𝑦&

1
𝑛∑&'"

$ 𝑥&# −
1
𝑛∑&'"

$ 𝑥&
#



Takeaways
• In order to have a valid solution, we need that

1
𝑛
4
&'"

$

𝑥&# −
1
𝑛
4
&'"

$

𝑥&

#

≠ 0

This is true as long as the 𝒙𝒊’s are not all the same!

• We can use the explicit expressions of  𝛽%, 𝛽" to derive confidence 
intervals
• This is a bit advanced, but the high-level idea is we assume the 𝑥&’s are Gaussian, 

from which we could derive the distribution of  𝛽', 𝛽!



Summary of  simple linear regression
• After solving <𝛽%, <𝛽", we could use the estimated coefficients to make 

predictions on unseen regions

,𝑦 = <𝛽"𝑥 + <𝛽%



Evaluation metrics
• 𝑹𝟐 statistic measures the proportion of  variance explained

RSS (Residual sum of  squares) = ∑&(!# (𝑦& − ,𝑦&))

TSS (Total sum of  squares) = ∑&(!# (𝑦& − .𝑦)), where .𝑦 = !
#
∑&(!# 𝑦&

𝑅) =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆
𝑇𝑆𝑆

𝑅) always takes on a value between 0 and 1



Evaluation metrics
• Correlation between two random variables is another measure of  linear 

relationship between 𝑋 and 𝑌

𝐶𝑜𝑟 𝑋, 𝑌 = ∑!"#
$ (,!-,̅)(0!-10)

∑!"#
$ ,!-,̅ %⋅ ∑!"#

$ 0!-10 %
, where �̅� = !

#
∑&(!# 𝑥& and .𝑦 = !

#
∑&(!# 𝑦&

• Example: in the linear regression example, we may take the uniform 
distribution of  𝑦", 𝑦#, … , 𝑦$ as the 1st random variable, and the uniform 
distribution of  ,𝑦", ,𝑦#, … , ,𝑦$ as the 2nd random variable

• Example: If  𝑋 and 𝑌 are independent, then 𝐶𝑜𝑟 𝑋, 𝑌 = 0
• Recall 𝐸 𝑋 ⋅ 𝑌 = 𝐸 𝑋 ⋅ 𝐸 𝑌



Lecture plan
• Multiple linear regression



Multiple linear regression
• Multiple features
• Quantitative inputs
• Transformations of  quantitative inputs: log, square-root, or square
• Basis expansion: 𝑥# = 𝑥"#, 𝑥* = 𝑥"*

• Numeric coding of  qualitative inputs
• Interactions between inputs: 𝑥* = 𝑥" ⋅ 𝑥#



Setting up the problem
• We’re giving a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , … , (𝑥$ , 𝑦$). Let us assume 

that each 𝑥 has 𝑝 features in total

• We want to learn a linear regression model to map 𝑥’s to 𝑦’s: the linear 
model has 𝑝 + 1 variables in total, 𝛽%, 𝛽", … , 𝛽+



Let us introduce several matrix notations
• Feature matrix (note that we have added a column of  ones):

𝑋 =

1 𝑥",", … , 𝑥",+
1 𝑥#,", … ,𝑥#,+

⋮ ⋮
1 𝑥$,", … , 𝑥$,+

• Label vector:

𝑦 =

𝑦"
𝑦#
⋮
𝑦$

• Predicted label:
E𝑦& = 𝛽% + 𝛽"𝑥&," + 𝛽#𝑥&,# +⋯+ 𝛽+𝑥&,+, for 𝑖 = 1,2, … , 𝑛

Exercise: what is the dimension 
of  𝑿, 𝒚, 𝜷, respectively?



More matrix notations
• Let us stack the variables we need to estimate together

𝛽 =

𝛽%
𝛽"
…
𝛽+

• Using matrix multiplication rule, we shall verify that

,𝑦 = 𝑋𝛽

Where ,𝑦 =

,𝑦"
,𝑦#
⋮
,𝑦$



One slide about matrix multiplication
• Let 𝐴 ∈ ℝ-×$ , 𝐵 ∈ ℝ$×+, their product 𝐶 = 𝐴𝐵 ∈ ℝ-×+

• Number of  columns of  𝐴 must be equal to the number of  rows of  𝐵
• Compute the product 𝐶 = 𝐴𝐵 using

𝑪𝒊,𝒋 = @
𝒌(𝟏

𝒏

𝑨𝒊,𝒌𝑩𝒌,𝒋

• An illustration

• Exercise: multiply 𝐴 = [1,2] with 𝐵 = 1 2
2 1



Start with the one-dimensional case
• Fitting a line with coefficient 𝛽" ∈ ℝ and intercept 𝛽% ∈ ℝ

E𝑦& = 𝛽% + 𝛽"𝑥&

• Recall matrix notation: ,𝑦 =

𝑦"
𝑦#
⋮
𝑦$

, 𝑋 =

1 𝑥"
1 𝑥#
⋮ ⋮
1 𝑥$

• Exercise: verify that ,𝑦 = 𝑋𝛽



Move to the multi-dimensional case
• Fitting a hyperplane with coefficients 𝛽", 𝛽#, … , 𝛽+ and intercept 𝛽%
• Exercise: First verify that the predicted labels are ,𝑦 = 𝑋𝛽
• Recall that MSE metric:

2𝑳 𝜷 =
𝟏
𝒏
4

𝒊'𝟏

𝒏
(𝒙𝒊1𝜷 − 𝒚𝒊)𝟐 =

𝟏
𝒏
4

𝒊'𝟏

𝒏
(E𝒚𝒊 − 𝒚𝒊)𝟐 =

𝟏
𝒏
(𝒚 − 𝑿𝜷)𝑻 𝒚 − 𝑿𝜷

• We’ll set the derivatives to zero: 3
45(7)
37!

, 3
45(7)
37"

, … , 3
45(7)
37#

• There’s an easier way to write this in the multi-dimensional case



Defining the gradient
• Definition: let 𝑓:ℝ9 → ℝ be a multi-dimensional function, which takes 

a vector of  𝑑 variables 𝑋 as input, and outputs a real value 𝑦 = 𝑓(𝑋)

• Suppose 𝑓 is differentiable at every coordinate, then, the gradient of  𝑓, 
denoted as ∇𝑓, is defined as

∇𝑓 𝑋 =

𝜕𝑓(𝑋)
𝜕𝑋"

,

𝜕𝑓(𝑋)
𝜕𝑋#

,
⋯ ,

𝜕𝑓(𝑋)
𝜕𝑋9



Back to estimating the coefficients
• The condition for setting all of  the derivatives of  2𝐿(𝛽) to zero amounts 

to the following
∇2𝐿 𝛽 = 0

• Claim:

∇2𝐿 𝛽 =
2
𝑛
𝑋1(𝑋𝛽 − 𝑦)

• Exercise: Verify the dimension of  the right-hand side 
• Now, we want to set the gradient as zero
• This means we have 𝑋8 𝑋𝛽 − 𝑦 = 0
• This leads to the following equation for 𝛽

W𝜷 = (𝑿𝑻𝑿):𝟏𝑿𝑻𝒚 This is called the Ordinary 
Least Squares (OLS) estimator



Takeaways
• We want 𝑋1𝑋 to be invertible (what does it mean?)
• Let’s first explain linear combinations: Given a set of  vectors 𝑆 =
{𝑥", … , 𝑥$} where 𝑥& ∈ ℝ$, a linear combination of  𝑆 is

∑𝒊(𝟏𝒏 𝒂𝒊𝒙𝒊 where 𝒂𝒊 ∈ ℝ
• The vector span of  𝑆, denoted as Span(𝑆), is the set of  all linear combinations 

of  the elements of  𝑆



Linearly independent vs. not linearly independent
• A set of  vectors 𝑆 = {𝑥", 𝑥#, … , 𝑥$} is linearly independent if  the 

following holds

∑𝒊(𝟏𝒏 𝒂𝒊𝒙𝒊 = 𝟎 if  and only if  𝒂𝟏 = 𝒂𝟐 = ⋯ = 𝒂𝒏 = 𝟎

• On the other hand, 𝑆 is not linearly independent if  there exists 
𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 that are not all zeros such that

@
𝒊(𝟏

𝒏
𝒂𝒊𝒙𝒊 = 𝟎

• Back to the previous example, which one is linearly independent 
and which one is not?



Examples of  linearly independent vectors
• Left: The two vectors are linearly independent
• Right: The three vectors are not linearly independent



Rank
• Rank: For 𝐴 ∈ ℝ-×$, the rank of  𝐴 is the maximum number of  

linearly independent columns or rows

• Exercises (after class)

𝑟𝑎𝑛𝑘 𝐴 ≤ min 𝑚, 𝑛
𝑟𝑎𝑛𝑘 𝐴 = 𝑟𝑎𝑛𝑘(𝐴1)

𝑟𝑎𝑛𝑘 𝐴𝐵 ≤ min(𝑟𝑎𝑛𝑘 𝐴 , 𝑟𝑎𝑛𝑘(𝐵))
𝑟𝑎𝑛𝑘 𝐴 + 𝐵 ≤ 𝑟𝑎𝑛𝑘 𝐴 + 𝑟𝑎𝑛𝑘(𝐵)



Metrics
• Mean squared error (MSE) is the average amount that the response will 

deviate from the true regression line

MSE = "
$
∑&'"$ (𝑦& − ,𝑦&)#

• Normalized MSE: Divide MSE by "
$
∑&'"$ 𝑦&#

• Root mean squared error: RMSE = MSE
• RMSE measures the average deviation between ,𝑦& and 𝑦&

• 𝑅# = 1 − ∑$ <$: =<$
%

∑$ <$: >< %

• ,𝑦& is the fitted 𝑦&, for example, in the linear model, ,𝑦& = I𝛽' + 𝑥& ⋅ I𝛽!
• More generally, let I𝑓 be the fitted function (e.g., quadratic), and then ,𝑦& = I𝑓(𝑥&)
• 0 ≤ 𝑅) ≤ 1



Setting confidence intervals
• Are the estimated coefficients statistically significant?
• Construct confidence intervals: With 95% probability, the range will 

contain the true value of  the parameter

𝛽' ∈ I𝛽' − 2 N SE( I𝛽'), I𝛽' + 2 N SE( I𝛽')
⋯

𝛽: ∈ I𝛽: − 2 N SE( I𝛽:), I𝛽! + 2 N SE( I𝛽:)

Statsmodel package provides estimated coefficients and standard errors
https://www.statsmodels.org/stable/index.html

https://www.statsmodels.org/stable/index.html


Hypothesis testing and significance values
• Null hypothesis: 𝛽" = 0, there is no relationship between 𝑋 and 𝑌
• Expected outcome: 𝛽" ≠ 0, there is relationship between 𝑋 and 𝑌

• T-statistic: number of  standard errors between <𝛽" and 0

𝑡 =
I𝛽!

SE( I𝛽!)

• 𝒑-value: probability of  observing at least |𝑡| under null hypothesis



Announcements
• Office hour: 12:30 PM – 1:30 PM, 177 Huntington Ave FL 22, Room 

2211
• Also accessible via Zoom, see link on Canvas

• 1st homework will be released on Friday
• TAs: Deb Roy, Michael Zhang


