Supervised Machine Learning and
Learning Theory

Lecture 2: Linear Regression, with Some Review of Linear Algebra

September 10, 2024




In-class quiz questions

* Given a data distribution D, a neural network fi; whose parameters are
otven by W, write down the mathematical definition of the test loss of

fw?

* Given n samples from D, denoted as (x1, V1), (X2,V2), o), (Xn, Yn),
write down the mathematical definition of the training loss of fy?

* What is representation learning? Could you name several methods for
representation learning?



Matrices and vectors

* Matrices: A rectangular array of numbers

al’l al’n
A=

am, 1 “ns am,n

* Vectors: An array consisting of a single column

o




Simple linear regression

* Let us consider the simplest case of a linear regression problem: We are
otving a list of one-dimensional features and their corresponding labels.
We want to build a regression model to achieve that

* Examples: Predicting housing values (last Friday), advertising, marketing, etc

* Input: (xq1, V1), (X2,¥2), -, (X5, Y) (assume we have already done the
training/test split)

* Output: a linear model parameterized by 3 and 4




Examples of [y and f;

* Fitting a regression model mapping TA ad spending to Sales amount
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Setting up the linear model

* Recall the input to the problem: (x4, V1), (X2,¥2), .., (X5, ¥y) (this is the
training data)

* Let us set up a predicted label for each sample:
:ﬁo +xiﬁ1,f01'i — 1 2

* Next, let us set up the mean squared error metric:

L(p) = Z(yl y)? == Z<ﬂo+xlﬁl 1)’

;

Where [ = )
1




Solving for 5y and [

* Recall that L(B) = % " 1(Bo + xiB1 — yi)?; we would like to minimize

the MSE metric
* We’re going to set the dertvatives of L with respect to By, 1 as zero
OL(B) 2m
= — +x;60—vyi) =0
oL(p) _ 2N
aﬁl :szl(ﬁo-l_xlﬁl_yl):o

=1




Solving for 5y and [

* We can re-arrange the derivatives to be zero as follows



Final solution

* This is a two-by-two linear system, which can be solved explicitly

(Gym,x? -3, x) (2, )

2
T 2 (Lyn .
ni=1i nlll

(1——21 m) ( - m)

Bo =

b1 =




Takeaways

* In order to have a valid solution, we need that

n 2

n
1 5 1
—in — —in * 0
n n

=1 =1

This is true as long as the X;’s are not all the same!

* We can use the explicit expressions of f5, f1 to derive confidence
intervals

* This 1s a bit advanced, but the high-level idea is we assume the x;’s are Gaussian,
from which we could derive the distribution of Sy, f1




Summary of simple linear regression

* After solving By, f1, we could use the estimated coefficients to make
predictions on unseen regions

y = Brx + By




Evaluation metrics

e R? statistic measures the proportion of variance explained

RSS (Residual sum of squares) = ’i’:l(yi — }71')2

1

TSS (Total sum of squares) = ’i’:l(yi — )7)2, where y = - ?:1 Vi

_ TSS—RSS _ RSS

R? 1——
TSS TSS

R? always takes on a value between 0 and 1




Evaluation metrics

e Correlation between two random variables 1s another measure of linear
relationship between X and Y

Cor(X,Y) = Lz (i D) YiZY) , Where X = 2 ?:1 Xiand y = l271'1:1 Vi
Ehs im0 S, 092 n n

* Example: in the linear regression example, we may take the uniform
distribution of yq, V>, ..., ¥y, as the 15t random variable, and the uniform
distribution of ¥, ¥, ..., ¥, as the 27 random variable

* Example: If X and Y are independent, then Cor(X,Y) = 0
« Recall E[X - Y] = E[X] - E[Y]



Lecture plan

* Multiple linear regression




Multiple linear regression

* Multiple features

* Quantitative inputs

* Transtormations of quantitative inputs: log, square-root, or square
* Basis expansion: X, = x{, x3 = x3
* Numeric coding of qualitative inputs

* Interactions between inputs: X3 = X1 * X>




Setting up the problem

* We’re giving a training set (xq, V1), (X2, ¥2), <, (X5, Yn)- Let us assume
that each x has p features in total

* We want to learn a linear regression model to map X’s to y’s: the linear
model has p + 1 variables in total, By, By, ..., Bp




Iet us introduce several matrix notations

* Feature matrix (note that we have added a column of ones):
-1 xl’l, ...,xljp_

X _ 1 x2,1, nnn ,x2,p

_1 xn’l, ---’xn’p_

e [Label vector:

V1 Exercise: what is the dimension
y = y 2 of X,y, B, respectively?
| Vn |

e Predicted label:
Vi =PBo+ P1xi1+ Poxip+ -+ Bpxip fori=12,..,n




More matrix notations

* Let us stack the variables we need to estimate together
_ﬁo —_
b1
LBy

* Using matrix multiplication rule, we shall verity that

y=Xp

p =




One slide about matrix multiplication

e Let A € R™™ B € R"™P their product C = AB € R™*P

* Number of columns of A must be equal to the number of rows of B

* Compute the product C = AB using 5
n In |b..lb 1
ST [P [+ PO
Cij = 2 A; By i (=)
k:1 al'llmo E
* An illustration NS
aglllan —— o

* HExercise: multiplyA — [1»2] with B = E ﬂ




Start with the one-dimensional case

* Fitting a line with coefficient f; € R and intercept fy € R

Yi = Bo + B1x;
Vi 1 X
* Recall matrix notation: y = y;Z , X = 1: 952
Yn_ 1 x,)

* Exercise: verify that y = X[3




Move to the multi-dimensional case

* Fitting a hyperplane with coefficients 51, B, ..., B and intercept f3
* Exercise: First verify that the predicted labels are § = X5
* Recall that MSE metric:

o 1" 1" 1
LB =7), iB-y)*=2) Gi-yd*=,0~XB'(y~Xp)

i i

OL(B) 9L(B) OL(B)
0fo ' 9p1 " 9Py

e We’'ll set the derivatives to zero:

* There’s an easier way to write this in the multi-dimensional case




Detining the gradient

* Definition: let f: R — R be a multi-dimensional function, which takes
a vector of d variables X as input, and outputs a real value y = f(X)

* Suppose f is differentiable at every coordinate, then, the gradient of f,

denoted as Vf, is defined as Af(X) -
0X;

af (X)
VIX) = ax,

df (X)
Tox,




Back to estimating the coetticients

* The condition for setting all of the derivatives of L(f) to zero amounts
to the following

VL(B) =0

e Claim:

- 2
VL(B) = =XT(XB —¥)

* Exercise: Verify the dimension of the right-hand side
* Now, we want to set the gradient as zero

e This means we have X ' (XB —y) = 0
* This leads to the following equation for 5

7 _ This is called the Ordinar
— XT X 1 XT y
B=( ) Y Least Squares (OLS) estimator




Takeaways

* We want X ' X to be invertible (what does it mean?)

* Let’s first explain linear combinations: Given a set of vectors 5 =
{x1, ..., %, } where x; € R™, a linear combination of S is
2?21 a;x; where a; € R
* The vector span of 5, denoted as Span($), is the set of all linear combinations
of the elements of S




Linearly independent vs. not linearly independent

* A set of vectors S = {xq, X5, ..., X, } is linearly independent if the
following holds

miaix;=0if andonlyif a; =a, = =a, =0

* On the other hand, S is not linearly independent if there exists
a4, 0a,, ..., a, that are not all zeros such that

n
z a;x; = 0
i=1

* Back to the previous example, which one is linearly independent
and which one is not?




Examples of linearly independent vectors

* Left: The two vectors are linearly independent

* Right: The three vectors are not linearly independent

Ya Ya




Rank

* Rank: For A € R™*" the rank of 4 is the maximum number of
linearly independent columns or rows

* Exercises (after class)

rank(A) < min(m,n)

rank(4) = rank(A")
rank(AB) < min(rank(A), rank(B))
rank(A + B) < rank(A) + rank(B)




Metrics

* Mean squared error (MSE) is the average amount that the response will
deviate from the true regression line

MSE_- n (Vi — yi)z
* Normalized MSE: Divide MSE by — —ym t L Yf
* Root mean squared error: RMSE = vV MSE

* RMSE measures the average deviation between J; and y;
. Rz —1— Zi(J’i_f’i)z
Zi(y i—¥)?
* ¥; is the fitted y;, for example, in the linear model, J; = ,éo + Xx; - Bl
* More generally, let f be the fitted function (e.g., quadratic), and then J; = £x)
*0<R*<1




Setting contidence intervals

* Are the estimated coetficients statistically significant?

* Construct confidence intervals: With 95% probability, the range will
contain the true value of the parameter

Bo € |Bo — 2 SE(Bo), Po + 2 - SE(Bo)|
,Bp S IBAp — 2 SE(Bp)ugAl + 2 SE(IBAp)]

Statsmodel package provides estimated coefficients and standard errors

https:/ /www.statsmodels.org/stable/index.html



https://www.statsmodels.org/stable/index.html

Hypothesis testing and significance values

* Null hypothesis: f; = 0, there is no relationship between X and Y
* Expected outcome: f; # 0, there is relationship between X and Y

* T-statistic: number of standard errors between 3; and 0

,_ By
SE(B1)

* p-value: probability of observing at least || under null hypothesis




Announcements

* Office hour: 12:30 PM — 1:30 PM, 177 Huntington Ave FL 22, Room
2211

* Also accessible via Zoom, see link on Canvas
* 15t homework will be released on Friday
* TAs: Deb Roy, Michael Zhang




