Supervised Machine Learning and Learning Theory

Lecture 3: The bias-variance trade-off, and K-nearest neighbors

September 13, 2024

- Recall the definition of R^2 : $1 \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \bar{y}_i)^2}$ $\sum_{i=1}^{n} (y_i - y_i)^2$, what is the meaning of R^2 as a measure of linear regression? Is \overline{R}^2 always non-negative?
- Can you explain when R^2 is non-negative?

- Recall the definition of correlation coefficient: $\frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{1-\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}}$ $\sum_{i=1}^n (x_i - \bar{x})^2 \cdot \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}$.
ל where $\bar{x} =$, $\frac{1}{n}\sum_{i=1}^n x_i, \overline{y} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n y_i$
- Let x be a uniformly random draw from $\{x_1, x_2, ..., x_n\}$. Similarly, let y be a uniformly random draw from $\{y_1, y_2, ..., y_n\}$
- Suppose that x and y are independent, meaning that for any realization of x, the value of y is unaffected, i.e., $Pr[x = x_i, y = y_j] = Pr[x =$ $[x_i] \cdot \Pr[y = y_j]$. What is the correlation coefficient between x and y?
- Generalize this to the case when x and y are arbitrary, independent random variables?

• Recall the ordinary least squares estimator as follows:

$$
\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y
$$

• When is the OLS estimator well-defined?

• What is the rank of the following matrix?

$$
A = diag([n, n-1, ..., 1]) = \begin{bmatrix} n, 0, & \dots & , 0 \\ 0, n-1, 0, & ..., 0 \\ 0, 0, n-2, & ..., 0 \\ \dots & & \dots & , 0, 1 \end{bmatrix}
$$

• What about the following matrix?

$$
A = diag([0, ..., 0, r, r - 1, ..., 1]) = \begin{bmatrix} 0,0, & ..., & 0 \\ 0,0, ..., r, 0, & ..., & 0 \\ 0,0, ..., 0, r - 1, ..., 0 \\ 0,0, & ..., & ..., & 0,1 \end{bmatrix}
$$

• **The bias-variance tradeoff**

A fundamental trade-off in machine learning

- The bias-variance trade-off is a fundamental aspect of a machine learning model
- Recall the mathematical setup of supervised machine learning: we have a set of samples $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}\$, in which every sample is drawn from an unknown distribution
- The training loss of a model f_W is defined as

• The test loss is defined as

$$
\hat{L}(f_W) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_W(x_i), y_i)
$$

 $L(f_W) = \mathbb{E}_{(x,y)\sim D} [\ell(f_W(x), y)]$

Ensuring that the gap between these two are small is a fundamental challenge

Let us look at a case study

- Suppose we would like to train a model to learn the true regression function $f(x) = x^2$ (x is a scalar)
- We use polynomial features in this case study:
	- A constant function: $\hat{f}_0(x) = \hat{\beta}_0$
	- A linear function: $\hat{f}_1(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1$
	- A quadratic function: $\hat{f}_2(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + x^2 \cdot \hat{\beta}_2$
	- A ninth-degree polynomial function: $\hat{f}_9(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + \dots + x^9 \cdot \hat{\beta}_9$

Four fitted models

Four Polynomial Models fit to a Simulated Dataset

X

Repeat the experiment for three times

- The zero predictor $\hat{f}_0(x)$ slightly varies, but the ninth-degree polynomial varies $\hat{f}_9(x)$ quite a bit
- Variance of $\hat{f}_0(x)$ is smaller than the variance of $\hat{f}_9(x)$

Predicting $f(x_0)$

- $x_0 = 0.9$
- $y = f(0.9) = x_0^2 = 0.81$
- 250 independent runs: For each resample, we fit polynomials with degree $0, 1, 2, 9$, and plot $\hat{f}(0.9)$

Predicting $f(x_0)$

- Squared bias: $\hat{f}_2(x) \approx \hat{f}_9(x) < \hat{f}_1(x) < \hat{f}_0(x)$
- Increasing degree from 2 to 9 does not further reduce bias
- Variance: $\hat{f}_0(x) < \hat{f}_1(x) < \hat{f}_2(x) < \hat{f}_9(x)$
- Increasing degree increases variance

Illustration

• Bias-variance curve as a function of the degree of the polynomial:

ty

Let us study the test loss more deeply

- Suppose the true function is f
- Let the labels be defined as $y = f(x) + \varepsilon$, where $\mathbb{E}[\varepsilon] = 0$
- Let $S = \{(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\}\)$ be the training dataset
- Let \hat{f} be a function estimated from the training dataset
- Let x be a random sample drawn from D . The test MSE is defined as

$$
L(x) = E_{(x,y)\sim D}\left[\left(y - \hat{f}(x)\right)^2\right]
$$

Let us expand the test loss

• The test MSE is equal to

$$
L(x) = \mathbb{E}_{(x,y)\sim D}[(y - \hat{f}(x))^2]
$$

= $\mathbb{E}_{(x,y)\sim D}[(y - f(x) + f(x) - \mathbb{E}_S[\hat{f}(x)] + \mathbb{E}_S[\hat{f}(x)] - \hat{f}(x))^2]$
= $\mathbb{E}_{(x,y)\sim D}[(\varepsilon + f(x) - \mathbb{E}_S[\hat{f}(x)] + \mathbb{E}_S[\hat{f}(x)] - \hat{f}(x))^2]$

• Recall that $\mathbb{E}|\varepsilon| = 0$, thus, the above must be equal to $L(x) = \mathbb{E}_{(x,y)\sim D}[\varepsilon^2] + \mathbb{E}_{(x,y)\sim D} \left[\left(f(x) - \mathbb{E}_{S}[\hat{f}(x)] + \mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x) \right) \right]$ 2 • $Var(\varepsilon) = \mathbb{E}_{(\chi, \gamma) \sim D}[\varepsilon^2]$ is the **irreducible error** from observing label y

Let us look at the reducible error

• The reducible error term:

$$
\mathbb{E}_{(x,y)\sim D,S}\left[\left(f(x) - \mathbb{E}_{S}[\hat{f}(x)] + \mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x)\right)^{2}\right]
$$
\n
$$
= \mathbb{E}_{(x,y)\sim D,S}\left[\left(f(x) - \mathbb{E}_{S}[\hat{f}(x)]\right)^{2}\right] + \mathbb{E}_{(x,y)\sim D,S}\left[\left(\mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x)\right)^{2}\right]
$$
\n
$$
+ 2\mathbb{E}_{(x,y)\sim D,S}\left[\left(f(x) - \mathbb{E}_{S}[\hat{f}(x)]\right) \cdot \left(\mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x)\right)\right]
$$
\nThis is zero: $\mathbb{E}_{x}[\mathbb{E}_{x}[x] - x] = 0$
\n
$$
= \mathbb{E}_{(x,y)\sim D,S}\left[\left(f(x) - \mathbb{E}_{S}[\hat{f}(x)]\right)^{2}\right] + \mathbb{E}_{(x,y)\sim D,S}\left[\left(\mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x)\right)^{2}\right]
$$
\nThis is y
\n
$$
= \text{Bias}\left(\hat{f}(x)\right)^{2} + \text{Var}\left(\hat{f}(x)\right)
$$

To summarize the derivations

- Let *x* be a test sample from *D* and let $y = f(x) + \varepsilon$
- Let \hat{f} be the estimator learned from the training dataset
- The expected test error over the training dataset is equal to

$$
\mathbb{E}_{S}[L(x)] = \mathbb{E}_{S}\left[\left(\varepsilon + f(x) - \mathbb{E}_{S}[\hat{f}(x)] + \mathbb{E}_{S}[\hat{f}(x)] - \hat{f}(x)\right)^{2}\right]
$$

$$
= \text{Var}(\varepsilon) + \text{Bias}\left(\hat{f}(x)\right)^2 + \text{Var}\left(\hat{f}(x)\right)
$$

Irreducible error

This variance is from the randomness of the training dataset upon the estimator \hat{f}

Back to the case study

Simulated Predictions for Polynomial Models

Visualization of bias variance

Lecture plan

• K-nearest neighbors (KNN)

-nearest neighbors regression

- Unlike linear regression, here there are no parameters (aka. non-parametric)
- K is a user-defined constant: K is an integer, e.g., 1,2,3, \cdots
- Given a value for K and a prediction point x_0 , $\hat{f}(x_0)$ is the average of the responses of K nearest neighbors:

$$
\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} y_i
$$

• $N_K(x_0)$ is the set of K training observations that are closest to x_0

Example: 1-nearest neighbor regression

 $k = 1$

- Prediction of the median house value of a neighbor given the percentage of households with low socioeconomic status (LSTAT)
- Orange curve: $\hat{f}(x_0)$
	- $\hat{f}(x_0)$ equals to the response of x_0 's nearest neighbor
	- $\hat{f}(x_0)$ is a step function

Example: 1-nearest neighbor regression

 $k = 1$

- $x_0 = 32$
- $N_K(x_0) = \{30.81\}$

$$
\bullet \hat{f}(x_0=32)=14.4
$$

 \hat{f} $\hat{\mathcal{F}}$ x_0) is a step function

 $k = 1$

• $x_0 = 32.79$: it is a switching point

•
$$
N_K(x_0) = \{30.81\} \text{ or } N_K(x_0) = \{34.77\}
$$

• Note that $32.79 - 30.81 = 1.98 =$ 34.77 − 32.79

•
$$
\hat{f}(x_0 = 32.79) = 14.4
$$
 or
 $\hat{f}(x_0 = 32.79) = 13.8$

 $\hat{f}(x_0)$ is a step function

 $k = 1$

• $x_0 = 33$

• $N_K(x_0) = \{34.77\}$ • Note that $34.77 - 33 = 1.77 <$ $33 - 30.81 = 2.19$

$$
\bullet \hat{f}(x_0=33)=13.8
$$

 $\hat{f}(x_0)$ is a step function

 $k = 1$

- $x_0 = 34$
- $N_K(x_0) = \{34.77\}$
- $\hat{f}(x_0 = 34) = 13.8$

 $\hat{f}(x_0)$ is a step function

 $k = 1$

- $x_0 = 36$
- $N_K(x_0) = \{36.98\}$

$$
\bullet \hat{f}(x_0=36)=7
$$

Example: 2-nearest neighbor regression

• $\hat{f}(x_0)$ equals to the average of responses of x_0 's 2 nearest neighbors

Example: 2-nearest neighbor regression

- $x_0 = 32$
- $N_K(x_0) = \{30.59, 30.81\}$

•
$$
\hat{f}(x_0 = 32) = \frac{5+14.4}{2}
$$

Example: 2-nearest neighbor regression

- $x_0 = 36$
- $N_K(x_0) = \{34.77, 36.98\}$

•
$$
\hat{f}(x_0 = 36) = \frac{13.8 + 7}{2}
$$

Example: 5-nearest neighbor regression

 $k = 5$

- $\hat{f}(x_0)$ equals to the average of responses of x_0 's 5 nearest neighbors
- $\hat{f}(x_0)$ is smoother as K increases

Example: 5-nearest neighbor regression

 $k = 5$

 \hat{f} $\boldsymbol{\hat{\digamma}}$ x_0) is smoother for a larger K

• Question: Is the model more flexible or less flexible for a larger K?

The bias-variance tradeoff

- Train a KNN model to learn the true function $f(x) = x^2$ (x is a scalar)
- $x_0 = 0.9$
- $y = f(0.9) = 0.81$
- 250 runs: for each dataset, we fit KNN with $K = 1, 5, 50, 100,$ and plot $\hat{f}(0.9)$

Simulated Predictions for KNN

The bias-variance tradeoff

Simulated Predictions for KNN

Reference

- Linear regression
	- In sklearn: **linear_model.LinearRegression**
		- See coding examples at https://scikitlearn.org/stable/modules/generated/sklearn.linear_mode
	- In statsmodels: OLS estimator
		- See coding examples at https://www.statsmodels.org/stab you can read off the standard errors to construct the conf

-nearest neighbors regression in Python

In [3]: from sklearn.neighbors import KNeighborsRegressor import pandas as pd import seaborn as sns

In [4]: df train = pd. DataFrame({'lstat': X train.reshape(-1,), 'medv': y train.reshape(-1,)})

Alternatively, weights = 'distance', where weight points by the inverse of their distance

Reference

Estimating the coefficients in Python

- sklearn.linear_model.LogisticRegression
- https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Announcements

• Homework one will be released in the afternoon—stay tuned on piazza!

