
Supervised Machine Learning and
Learning Theory

Lecture 3: The bias-variance trade-off, and K-nearest neighbors

September 13, 2024

In-class quiz questions
• Recall the definition of 𝑅!: 1 − ∑!"#

$ #!$ %#! %

∑!"#
$ #!$ &# % , what is the meaning of 𝑅!

as a measure of linear regression? Is 𝑅! always non-negative?

• Can you explain when 𝑅! is non-negative?

In-class quiz questions
• Recall the definition of correlation coefficient:

∑!"#
$ '!$'̅ #!$ &#

∑!"#
$ '!$'̅ %⋅ ∑!"#

$ (#!$ &#)
,

where �̅� = ,
-
∑./,- 𝑥. , (𝑦 =

,
-
∑./,- 𝑦.

• Let 𝑥 be a uniformly random draw from 𝑥,, 𝑥!, … , 𝑥- . Similarly, let 𝑦
be a uniformly random draw from {𝑦,, 𝑦!, … , 𝑦-}
• Suppose that 𝑥 and 𝑦 are independent, meaning that for any realization

of 𝑥, the value of 𝑦 is unaffected, i.e., Pr 𝑥 = 𝑥. , 𝑦 = 𝑦0 = Pr[
]

𝑥 =
𝑥. ⋅ Pr 𝑦 = 𝑦0 . What is the correlation coefficient between 𝑥 and 𝑦?

• Generalize this to the case when 𝑥 and 𝑦 are arbitrary, independent
random variables?

In-class quiz questions
• Recall the ordinary least squares estimator as follows:

3𝛽 = 𝑋1𝑋 $,𝑋1𝑦

• When is the OLS estimator well-defined?

In-class quiz questions
• What is the rank of the following matrix?

𝐴 = 𝑑𝑖𝑎𝑔 𝑛, 𝑛 − 1,… , 1 =

𝑛, 0, … , 0
0, 𝑛 − 1,0, … , 0
0,0, 𝑛 − 2, … , 0

…
0,0, … , 0,1

• What about the following matrix?

𝐴 = 𝑑𝑖𝑎𝑔 [0, … , 0, 𝑟, 𝑟 − 1,… , 1] =

0,0, … , 0
…

0,0, … , 𝑟, 0, … , 0
0,0, … , 0, 𝑟 − 1… , 0

…
0,0, … , 0,1

Lecture plan
• The bias-variance tradeoff

A fundamental trade-off in machine learning
• The bias-variance trade-off is a fundamental aspect of a machine

learning model
• Recall the mathematical setup of supervised machine learning: we have a

set of samples { 𝑥,, 𝑦, , 𝑥!, 𝑦! , … , (𝑥- , 𝑦-)}, in which every sample is
drawn from an unknown distribution 𝐷
• The training loss of a model 𝑓2 is defined as

:𝐿 𝑓2 =
1
𝑛
=
./,

-

ℓ 𝑓2 𝑥. , 𝑦.

• The test loss is defined as
𝐿 𝑓2 = 𝔼 ',# ∼5 ℓ 𝑓2 𝑥 , 𝑦

Ensuring that the gap
between these two are
small is a fundamental
challenge

Let us look at a case study
• Suppose we would like to train a model to learn the true regression

function 𝑓 𝑥 = 𝑥! (𝑥 is a scalar)

• We use polynomial features in this case study:
• A constant function: !𝑓! 𝑥 = !𝛽!
• A linear function: !𝑓" 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽"
• A quadratic function: !𝑓# 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽" + 𝑥# ⋅ !𝛽#
• A ninth-degree polynomial function: !𝑓$ 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽" +⋯+ 𝑥$ ⋅ !𝛽$

Four fitted models

• Zero predictor model fits poorly
• Linear model is reasonable
• Quadratic model fits much better
• Ninth degree model seems rather wild

Repeat the experiment for three times
• The zero predictor !𝑓! 𝑥 slightly varies, but the ninth-degree polynomial varies
!𝑓$ 𝑥 quite a bit

• Variance of !𝑓! 𝑥 is smaller than the variance of !𝑓$ 𝑥

Predicting 𝑓 𝑥!
• 𝑥! = 0.9
• 𝑦 = 𝑓 0.9 = 𝑥!# = 0.81
• 250 independent runs: For each

resample, we fit polynomials with
degree 0, 1, 2, 9, and plot !𝑓 0.9

bias

Proportional to variance

Average prediction
across 𝟐𝟓𝟎 runs

Predicting 𝑓 𝑥!

bias

Proportional to variance

Average prediction across 250 +𝑓(𝑥! = 0.9)

• Squared bias:
!𝑓# 𝑥 ≈ !𝑓$ 𝑥 < !𝑓" 𝑥 < !𝑓! 𝑥

• Increasing degree from 2 to 9
does not further reduce bias
• Variance:

!𝑓! 𝑥 < !𝑓" 𝑥 < !𝑓# 𝑥 < !𝑓$ 𝑥
• Increasing degree increases

variance

Illustration
• Bias-variance curve as a function of the degree of the polynomial:

2 5 10 20
0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

Let us study the test loss more deeply
• Suppose the true function is 𝑓
• Let the labels be defined as 𝑦 = 𝑓 𝑥 + 𝜀, where 𝔼 𝜀 = 0
• Let 𝑆 = {(𝑥,, 𝑦,), (𝑥!, 𝑦!),⋯ , (𝑥- , 𝑦-)} be the training dataset
• Let 3𝑓 be a function estimated from the training dataset
• Let 𝑥 be a random sample drawn from 𝐷. The test MSE is defined as

𝐿 𝑥 = 𝐸 3,5 ∼7 𝑦 − !𝑓 𝑥
#

Let us expand the test loss
• The test MSE is equal to

𝐿 𝑥 = 𝔼 3,5 ∼7[𝑦 − !𝑓 𝑥)#

= 𝔼 3,5 ∼7 𝑦 − 𝑓 𝑥 + 𝑓(𝑥) − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= 𝔼 3,5 ∼7 𝜀 + 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

• Recall that 𝔼 𝜀 = 0, thus, the above must be equal to

𝐿 𝑥 = 𝔼 3,5 ∼7 𝜀# + 𝔼 3,5 ∼7 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

• Var 𝜀 = 𝔼 ',# ∼5 𝜀! is the irreducible error from observing label 𝑦

Let us look at the reducible error
• The reducible error term:

𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= 𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥
#
+ 𝔼 3,5 ∼7,8 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

#

+ 2𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 ⋅ 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

= 𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥
#
+ 𝔼 3,5 ∼7,8 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

#

=Bias !𝑓 𝑥
#
+Var !𝑓 𝑥

This is zero: 𝔼𝒙 𝔼𝒙 𝒙 − 𝒙 = 𝟎

This is 𝒚

To summarize the derivations
• Let 𝑥 be a test sample from 𝐷 and let 𝑦 = 𝑓 𝑥 + 𝜀
• Let 3𝑓 be the estimator learned from the training dataset
• The expected test error over the training dataset is equal to

𝔼8 𝐿 𝑥 = 𝔼8 𝜀 + 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= Var 𝜀 + Bias !𝑓 𝑥
#
+ Var !𝑓 𝑥

This variance is from the randomness of
the training dataset upon the estimator =𝒇

Irreducible error

Back to the case study

Bias

Proportional to variance

Visualization of bias variance

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

𝑓 is degree nine,
high noise

𝑓 is degree two,
high noise

𝑓 is degree one,
low noise

Irreducible
error

Lecture plan
• 𝐾-nearest neighbors (KNN)

𝐾-nearest neighbors regression
• Unlike linear regression, here there are no parameters (aka. non-parametric)

• 𝐾 is a user-defined constant: 𝐾 is an integer, e.g., 1,2,3,⋯

• Given a value for 𝐾 and a prediction point 𝑥6, 3𝑓 𝑥6 is the average of the
responses of 𝐾 nearest neighbors:

!𝑓 𝑥! =
1
𝐾

C
3!∈@"(3#)

𝑦A

• 𝑁7(𝑥6) is the set of 𝐾 training observations that are closest to 𝑥6

Example: 1-nearest neighbor regression

• Prediction of the median house
value of a neighbor given the
percentage of households with low
socioeconomic status (LSTAT)

• Orange curve: 3𝑓 𝑥6
• !𝑓 𝑥! equals to the response of 𝑥!’s

nearest neighbor
• !𝑓 𝑥! is a step function

Example: 1-nearest neighbor regression

• 𝑥6 = 32

• 𝑁7 𝑥6 = {30.81}

• 3𝑓 𝑥6 = 32 = 14.4
X

%𝑓 𝑥! is a step function

• 𝑥6 = 32.79:	it is a switching point

• 𝑁7 𝑥6 = 30.81 or 𝑁7 𝑥6 =
34.77
• Note that 32.79 − 30.81 = 1.98 =
34.77 − 32.79

• 3𝑓 𝑥6 = 32.79 = 14.4 or
3𝑓 𝑥6 = 32.79 = 13.8

X

%𝑓 𝑥! is a step function

• 𝑥6 = 33

• 𝑁7 𝑥6 = 34.77
• Note that 34.77 − 33 = 1.77 <
33 − 30.81 = 2.19

• 3𝑓 𝑥6 = 33 = 13.8

X

%𝑓 𝑥! is a step function

• 𝑥6 = 34

• 𝑁7 𝑥6 = 34.77

• 3𝑓 𝑥6 = 34 = 13.8 X

%𝑓 𝑥! is a step function

• 𝑥6 = 36

• 𝑁7 𝑥6 = {36.98}

• 3𝑓 𝑥6 = 36 = 7

X

Example: 2-nearest neighbor regression

• 3𝑓 𝑥6 equals to the average of
responses of 𝑥6’s 2 nearest
neighbors

Example: 2-nearest neighbor regression

• 𝑥6 = 32

• 𝑁7 𝑥6 = {30.59,30.81}

• 3𝑓 𝑥6 = 32 = 89,:.:
!

X

Example: 2-nearest neighbor regression

• 𝑥6 = 36

• 𝑁7 𝑥6 = {34.77,36.98}

• 3𝑓 𝑥6 = 36 = ,<.=9>
!

X

Example: 5-nearest neighbor regression

• 3𝑓 𝑥6 equals to the average of
responses of 𝑥6’s 5 nearest
neighbors

• 3𝑓 𝑥6 is smoother as 𝐾 increases

Example: 5-nearest neighbor regression

• 𝑥6 = 36

• 𝑁7 𝑥6 =
{30.59,30.81,34.77,36.98,37.97}

• 3𝑓 𝑥6 = 36 = 89,:.:9,<.=9>9,<.=
8 X

%𝑓 𝑥! is smoother for a larger 𝐾

• Question: Is the model more flexible or less flexible for a larger 𝐾?

The bias-variance tradeoff
• Train a KNN model to

learn the true function
𝑓 𝑥 = 𝑥! (𝑥 is a scalar)
• 𝑥6 = 0.9
• 𝑦 = 𝑓 0.9 = 0.81
• 250 runs: for each

dataset, we fit KNN with
𝐾 = 1, 5, 50, 100, and
plot 3𝑓(0.9)

Bias

Proportional
to variance

The bias-variance tradeoff

Bias

Proportional
to variance

• The square of bias
!𝑓B 𝑥 ≈ !𝑓" 𝑥 < !𝑓B! 𝑥 <
!𝑓"!! 𝑥

• Increasing 𝐾 increases bias

• Variance
!𝑓"!! 𝑥 < !𝑓B! 𝑥 < !𝑓B 𝑥 <
!𝑓" 𝑥

• Increasing 𝐾 reduces variance

Reference
• Linear regression
• In sklearn: linear_model.LinearRegression

• See coding examples at https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

• In statsmodels: OLS estimator
• See coding examples at https://www.statsmodels.org/stable/regression.html, from which

you can read off the standard errors to construct the confidence intervals

https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://www.statsmodels.org/stable/regression.html

𝐾-nearest neighbors regression in Python

Alternatively,
weights = ‘distance’,
where weight points
by the inverse of
their distance

Reference
Estimating the coefficients in Python
• sklearn.linear_model.LogisticRegression
• https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Announcements
• Homework one will be released in the afternoon—stay tuned on piazza!

