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In-class quiz questions
• Recall the definition of  𝑅!: 1 − ∑!"#

$ #!$ %#! %

∑!"#
$ #!$ &# % , what is the meaning of  𝑅!

as a measure of  linear regression? Is 𝑅! always non-negative?

• Can you explain when 𝑅! is non-negative?



In-class quiz questions
• Recall the definition of  correlation coefficient: 

∑!"#
$ '!$'̅ #!$ &#

∑!"#
$ '!$'̅ %⋅ ∑!"#

$ (#!$ &#)
, 

where �̅� = ,
-
∑./,- 𝑥. , (𝑦 =

,
-
∑./,- 𝑦.

• Let 𝑥 be a uniformly random draw from 𝑥,, 𝑥!, … , 𝑥- . Similarly, let 𝑦
be a uniformly random draw from {𝑦,, 𝑦!, … , 𝑦-}
• Suppose that 𝑥 and 𝑦 are independent, meaning that for any realization 

of  𝑥, the value of  𝑦 is unaffected, i.e., Pr 𝑥 = 𝑥. , 𝑦 = 𝑦0 = Pr[
]

𝑥 =
𝑥. ⋅ Pr 𝑦 = 𝑦0 . What is the correlation coefficient between 𝑥 and 𝑦?

• Generalize this to the case when 𝑥 and 𝑦 are arbitrary, independent 
random variables? 



In-class quiz questions
• Recall the ordinary least squares estimator as follows:

3𝛽 = 𝑋1𝑋 $,𝑋1𝑦

• When is the OLS estimator well-defined?



In-class quiz questions
• What is the rank of  the following matrix?

𝐴 = 𝑑𝑖𝑎𝑔 𝑛, 𝑛 − 1,… , 1 =

𝑛, 0, … , 0
0, 𝑛 − 1,0, … , 0
0,0, 𝑛 − 2, … , 0

…
0,0, … , 0,1

• What about the following matrix?

𝐴 = 𝑑𝑖𝑎𝑔 [0, … , 0, 𝑟, 𝑟 − 1,… , 1] =

0,0, … , 0
…

0,0, … , 𝑟, 0, … , 0
0,0, … , 0, 𝑟 − 1… , 0

…
0,0, … , 0,1



Lecture plan
• The bias-variance tradeoff



A fundamental trade-off  in machine learning
• The bias-variance trade-off  is a fundamental aspect of  a machine 

learning model
• Recall the mathematical setup of  supervised machine learning: we have a 

set of  samples { 𝑥,, 𝑦, , 𝑥!, 𝑦! , … , (𝑥- , 𝑦-)}, in which every sample is 
drawn from an unknown distribution 𝐷
• The training loss of  a model 𝑓2 is defined as

:𝐿 𝑓2 =
1
𝑛
=
./,

-

ℓ 𝑓2 𝑥. , 𝑦.

• The test loss is defined as
𝐿 𝑓2 = 𝔼 ',# ∼5 ℓ 𝑓2 𝑥 , 𝑦

Ensuring that the gap 
between these two are 
small is a fundamental 
challenge



Let us look at a case study
• Suppose we would like to train a model to learn the true regression 

function 𝑓 𝑥 = 𝑥! (𝑥 is a scalar)

• We use polynomial features in this case study:
• A constant function: !𝑓! 𝑥 = !𝛽!
• A linear function: !𝑓" 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽"
• A quadratic function: !𝑓# 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽" + 𝑥# ⋅ !𝛽#
• A ninth-degree polynomial function: !𝑓$ 𝑥 = !𝛽! + 𝑥 ⋅ !𝛽" +⋯+ 𝑥$ ⋅ !𝛽$



Four fitted models

• Zero predictor model fits poorly
• Linear model is reasonable
• Quadratic model fits much better 
• Ninth degree model seems rather wild



Repeat the experiment for three times
• The zero predictor !𝑓! 𝑥 slightly varies, but the ninth-degree polynomial varies 
!𝑓$ 𝑥 quite a bit

• Variance of  !𝑓! 𝑥 is smaller than the variance of  !𝑓$ 𝑥



Predicting 𝑓 𝑥!
• 𝑥! = 0.9
• 𝑦 = 𝑓 0.9 = 𝑥!# = 0.81
• 250 independent runs: For each 

resample, we fit polynomials with 
degree 0, 1, 2, 9, and plot !𝑓 0.9

bias

Proportional to variance

Average prediction 
across 𝟐𝟓𝟎 runs



Predicting 𝑓 𝑥!

bias

Proportional to variance

Average prediction across 250 +𝑓(𝑥! = 0.9)

• Squared bias:
!𝑓# 𝑥 ≈ !𝑓$ 𝑥 < !𝑓" 𝑥 < !𝑓! 𝑥

• Increasing degree from 2 to 9
does not further reduce bias
• Variance:

!𝑓! 𝑥 < !𝑓" 𝑥 < !𝑓# 𝑥 < !𝑓$ 𝑥
• Increasing degree increases 

variance



Illustration
• Bias-variance curve as a function of  the degree of  the polynomial:
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Let us study the test loss more deeply
• Suppose the true function is 𝑓
• Let the labels be defined as 𝑦 = 𝑓 𝑥 + 𝜀, where 𝔼 𝜀 = 0
• Let 𝑆 = {(𝑥,, 𝑦,), (𝑥!, 𝑦!),⋯ , (𝑥- , 𝑦-)} be the training dataset
• Let 3𝑓 be a function estimated from the training dataset
• Let 𝑥 be a random sample drawn from 𝐷. The test MSE is defined as

𝐿 𝑥 = 𝐸 3,5 ∼7 𝑦 − !𝑓 𝑥
#



Let us expand the test loss
• The test MSE is equal to

𝐿 𝑥 = 𝔼 3,5 ∼7[ 𝑦 − !𝑓 𝑥 )#

= 𝔼 3,5 ∼7 𝑦 − 𝑓 𝑥 + 𝑓(𝑥) − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= 𝔼 3,5 ∼7 𝜀 + 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

• Recall that 𝔼 𝜀 = 0, thus, the above must be equal to

𝐿 𝑥 = 𝔼 3,5 ∼7 𝜀# + 𝔼 3,5 ∼7 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

• Var 𝜀 = 𝔼 ',# ∼5 𝜀! is the irreducible error from observing label 𝑦



Let us look at the reducible error
• The reducible error term:

𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= 𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥
#
+ 𝔼 3,5 ∼7,8 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

#

+ 2𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 ⋅ 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

= 𝔼 3,5 ∼7,8 𝑓 𝑥 − 𝔼8 !𝑓 𝑥
#
+ 𝔼 3,5 ∼7,8 𝔼8 !𝑓 𝑥 − !𝑓 𝑥

#

=Bias !𝑓 𝑥
#
+Var !𝑓 𝑥

This is zero: 𝔼𝒙 𝔼𝒙 𝒙 − 𝒙 = 𝟎

This is 𝒚



To summarize the derivations
• Let 𝑥 be a test sample from 𝐷 and let 𝑦 = 𝑓 𝑥 + 𝜀
• Let 3𝑓 be the estimator learned from the training dataset
• The expected test error over the training dataset is equal to

𝔼8 𝐿 𝑥 = 𝔼8 𝜀 + 𝑓 𝑥 − 𝔼8 !𝑓 𝑥 + 𝔼8 !𝑓 𝑥 − !𝑓 𝑥
#

= Var 𝜀 + Bias !𝑓 𝑥
#
+ Var !𝑓 𝑥

This variance is from the randomness of  
the training dataset upon the estimator =𝒇

Irreducible error



Back to the case study

Bias

Proportional to variance



Visualization of  bias variance
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𝑓 is degree nine, 
high noise

𝑓 is degree two, 
high noise

𝑓 is degree one, 
low noise

Irreducible 
error



Lecture plan
• 𝐾-nearest neighbors (KNN)



𝐾-nearest neighbors regression
• Unlike linear regression, here there are no parameters (aka. non-parametric)

• 𝐾 is a user-defined constant: 𝐾 is an integer, e.g., 1,2,3,⋯

• Given a value for 𝐾 and a prediction point 𝑥6, 3𝑓 𝑥6 is the average of  the 
responses of  𝐾 nearest neighbors:

!𝑓 𝑥! =
1
𝐾

C
3!∈@"(3#)

𝑦A

• 𝑁7(𝑥6) is the set of  𝐾 training observations that are closest to 𝑥6



Example: 1-nearest neighbor regression

• Prediction of  the median house 
value of  a neighbor given the 
percentage of  households with low 
socioeconomic status (LSTAT)

• Orange curve: 3𝑓 𝑥6
• !𝑓 𝑥! equals to the response of  𝑥!’s 

nearest neighbor
• !𝑓 𝑥! is a step function



Example: 1-nearest neighbor regression

• 𝑥6 = 32

• 𝑁7 𝑥6 = {30.81}

• 3𝑓 𝑥6 = 32 = 14.4
X



%𝑓 𝑥! is a step function

• 𝑥6 = 32.79:	it is a switching point

• 𝑁7 𝑥6 = 30.81 or 𝑁7 𝑥6 =
34.77
• Note that 32.79 − 30.81 = 1.98 =
34.77 − 32.79

• 3𝑓 𝑥6 = 32.79 = 14.4 or 
3𝑓 𝑥6 = 32.79 = 13.8

X



%𝑓 𝑥! is a step function

• 𝑥6 = 33

• 𝑁7 𝑥6 = 34.77
• Note that 34.77 − 33 = 1.77 <
33 − 30.81 = 2.19

• 3𝑓 𝑥6 = 33 = 13.8

X



%𝑓 𝑥! is a step function

• 𝑥6 = 34

• 𝑁7 𝑥6 = 34.77

• 3𝑓 𝑥6 = 34 = 13.8 X



%𝑓 𝑥! is a step function

• 𝑥6 = 36

• 𝑁7 𝑥6 = {36.98}

• 3𝑓 𝑥6 = 36 = 7

X



Example: 2-nearest neighbor regression

• 3𝑓 𝑥6 equals to the average of  
responses of  𝑥6’s 2 nearest 
neighbors



Example: 2-nearest neighbor regression

• 𝑥6 = 32

• 𝑁7 𝑥6 = {30.59,30.81}

• 3𝑓 𝑥6 = 32 = 89,:.:
!

X



Example: 2-nearest neighbor regression

• 𝑥6 = 36

• 𝑁7 𝑥6 = {34.77,36.98}

• 3𝑓 𝑥6 = 36 = ,<.=9>
!

X



Example: 5-nearest neighbor regression 

• 3𝑓 𝑥6 equals to the average of  
responses of  𝑥6’s 5 nearest 
neighbors

• 3𝑓 𝑥6 is smoother as 𝐾 increases



Example: 5-nearest neighbor regression 

• 𝑥6 = 36

• 𝑁7 𝑥6 =
{30.59,30.81,34.77,36.98,37.97}

• 3𝑓 𝑥6 = 36 = 89,:.:9,<.=9>9,<.=
8 X



%𝑓 𝑥! is smoother for a larger 𝐾

• Question: Is the model more flexible or less flexible for a larger 𝐾?



The bias-variance tradeoff
• Train a KNN model to 

learn the true function 
𝑓 𝑥 = 𝑥! (𝑥 is a scalar)
• 𝑥6 = 0.9
• 𝑦 = 𝑓 0.9 = 0.81
• 250 runs: for each 

dataset, we fit KNN with 
𝐾 = 1, 5, 50, 100, and 
plot 3𝑓(0.9)

Bias

Proportional 
to variance



The bias-variance tradeoff

Bias

Proportional 
to variance

• The square of  bias
!𝑓B 𝑥 ≈ !𝑓" 𝑥 < !𝑓B! 𝑥 <
!𝑓"!! 𝑥

• Increasing 𝐾 increases bias

• Variance
!𝑓"!! 𝑥 < !𝑓B! 𝑥 < !𝑓B 𝑥 <
!𝑓" 𝑥

• Increasing 𝐾 reduces variance



Reference
• Linear regression
• In sklearn: linear_model.LinearRegression

• See coding examples at https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

• In statsmodels: OLS estimator
• See coding examples at https://www.statsmodels.org/stable/regression.html, from which 

you can read off  the standard errors to construct the confidence intervals

https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://www.statsmodels.org/stable/regression.html


𝐾-nearest neighbors regression in Python

Alternatively, 
weights = ‘distance’, 
where weight points 
by the inverse of  
their distance



Reference
Estimating the coefficients in Python
• sklearn.linear_model.LogisticRegression
• https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html



Announcements
• Homework one will be released in the afternoon—stay tuned on piazza!


