DS 5220, Lecture 5: Logistic Regression Using Gradient Descent

September 20, 2024

Here, we'll look at the logistic regression model step-by-step and describe a gradient descent algorithm to solve the regression model. Suppose we have an input set (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , where every x_i is a *p*-dimensional feature vector, and y_i is a binary label between $+1$ or -1 .

In the logit model, we want to know what's the probability that a given *x* has a certain label, in this case: $Pr[y = +1 | x]$ and $Pr[y = -1 | x]$. We'll assume that the probabilities follow the logistic function. For example, suppose the true label is $+1$, then we want $Pr[y = +1 | x]$ to be as close to 1 as possible. Using the logistic function, we may represent this as:

$$
Pr[y = +1 | x] = \frac{\exp (\beta_0 + \sum_{i=1}^p \beta_i x_i)}{1 + \exp (\beta_0 + \sum_{i=1}^p \beta_i x_i)}.
$$
\n(1)

The logistic loss (or log loss) is the negative log-likelihood of the above probability, which is

$$
-\log \Pr \left[y = +1 \mid x\right] = -\log \frac{\exp \left(\beta_0 + \sum_{i=1}^p \beta_i x_i\right)}{1 + \exp \left(\beta_0 + \sum_{i=1}^p \beta_i x_i\right)}
$$

$$
= \log \frac{1 + \exp \left(\beta_0 + \sum_{i=1}^p \beta_i x_i\right)}{\exp \left(\beta_0 + \sum_{i=1}^p \beta_i x_i\right)}
$$

$$
= \log \left(1 + \exp \left(-\beta_0 - \sum_{i=1}^p \beta_i x_i\right)\right)
$$

At the other extreme, when the true label is -1 , we want the probability of [\(1\)](#page-0-0) to be as low as possible. Instead, the log loss becomes

$$
\log\left(1+\exp\left(\beta_0+\sum_{i=1}^p\beta_ix_i\right)\right).
$$

Taken together, we may write the averaged log-loss in the training set as

$$
\hat{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \cdot (\beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j}) \right) \right),
$$

where $x_{i,j}$ is the *j*-the entry of x_i .

Unlike the least squares problem, logistic regression does not permit a closed-form solution. One way to solve this regression problem is using an optimization algorithm such as gradient

descent. We need to compute the gradient of the loss, $\nabla \hat{L}(\beta)$. Then, we set a step size parameter η_t (usually between 0 and 1), for $t = 1, 2, ..., T$. With the gradient, we can update β as follows:

$$
\beta^{(t)} \leftarrow \beta^{(t-1)} - \eta_t \cdot \nabla \hat{L}(\beta^{(t-1)}),
$$

for $t = 1, 2, ..., T$.

Recall that the gradient is a vector that includes the entry-wise partial derivative of \hat{L} . Let's look at one entry as an example. For a particular (x_i, y_i) , let's look at the partial derivative of the log-loss over *β^j* :

$$
\frac{\partial \log \left(1+\exp\left(-y_{i}\cdot(\beta_{0}+\sum_{j=1}^{p}\beta_{j}x_{i,j}\right)\right)}{\partial \beta_{j}}=\frac{\exp\left(-y_{i}\cdot(\beta_{0}+\sum_{j=1}^{p}\beta_{j}x_{i,j})\right)}{1+\exp\left(-y_{i}\cdot(\beta_{0}+\sum_{j=1}^{p}\beta_{j}x_{i,j})\right)}\times(-y_{i}x_{i,j}),
$$

for any $j = 1, 2, ..., p$. As for β_0 , the partial derivative is similar:

$$
\frac{\partial \log \left(1+\exp\left(-y_{i}\cdot (\beta_{0}+\sum_{j=1}^{p}\beta_{i}x_{i,j})\right)\right)}{\partial \beta_{0}}=\frac{\exp\left(-y_{i}\cdot \left(\beta_{0}+\sum_{j=1}^{p}\beta_{j}x_{i,j}\right)\right)}{1+\exp\left(-y_{i}\cdot \left(\beta_{0}+\sum_{j=1}^{p}\beta_{j}x_{i,j}\right)\right)}\times (-y_{i}).
$$

Taken together, we have obtained the gradient of \hat{L} .

Lastly, we'll show that the log loss, $\ell(x) = \log(1 + \exp(-x))$ is a convex function. Recall that a function is convex if and only if $\ell''(x) \geq 0$, or equivalently, $\alpha\ell(x) + (1 - \alpha)\ell(y) \geq \ell(\alpha x + (1 - \alpha)y)$.

$$
\ell'(x) = -\frac{\exp(-x)}{1 + \exp(-x)} = \frac{-1}{1 + \exp(x)},
$$

$$
\ell''(x) = \frac{\exp(x)}{(1 + \exp(x))^2} > 0.
$$

With a bit more calculation, one could show that for minimizing a convex function, the gradient descent algorithm (starting from a random initialization) will eventually converge to a global minimizer that is approximately optimal for minimizing $\hat{L}(\beta)$.