
DS 5220, Lecture 5: Logistic Regression Using Gradient
Descent

September 20, 2024

Here, we’ll look at the logistic regression model step-by-step and describe a gradient descent
algorithm to solve the regression model. Suppose we have an input set (x1, y1), (x2, y2), . . . , (xn, yn),
where every xi is a p-dimensional feature vector, and yi is a binary label between +1 or −1.

In the logit model, we want to know what’s the probability that a given x has a certain label, in
this case: Pr[y = +1 | x] and Pr[y = −1| | x]. We’ll assume that the probabilities follow the logistic
function. For example, suppose the true label is +1, then we want Pr[y = +1 | x] to be as close to 1
as possible. Using the logistic function, we may represent this as:

Pr [y = +1 | x] =
exp

(
β0 + ∑

p
i=1 βixi

)
1 + exp

(
β0 + ∑

p
i=1 βixi

) . (1)

The logistic loss (or log loss) is the negative log-likelihood of the above probability, which is

− log Pr [y = +1 | x] = − log
exp

(
β0 + ∑

p
i=1 βixi

)
1 + exp

(
β0 + ∑

p
i=1 βixi

)
= log

1 + exp
(

β0 + ∑
p
i=1 βixi

)
exp

(
β0 + ∑

p
i=1 βixi

)
= log

(
1 + exp

(
−β0 −

p

∑
i=1

βixi

))

At the other extreme, when the true label is −1, we want the probability of (1) to be as low as
possible. Instead, the log loss becomes

log

(
1 + exp

(
β0 +

p

∑
i=1

βixi

))
.

Taken together, we may write the averaged log-loss in the training set as

L̂(β) =
1
n

n

∑
i=1

log

(
1 + exp

(
−yi ·

(
β0 +

p

∑
j=1

β jxi,j
)))

,

where xi,j is the j-the entry of xi.
Unlike the least squares problem, logistic regression does not permit a closed-form solution.

One way to solve this regression problem is using an optimization algorithm such as gradient

1



descent. We need to compute the gradient of the loss, ∇L̂(β). Then, we set a step size parameter ηt
(usually between 0 and 1), for t = 1, 2, . . . , T. With the gradient, we can update β as follows:

β(t) ← β(t−1) − ηt · ∇L̂(β(t−1)),

for t = 1, 2, . . . , T.
Recall that the gradient is a vector that includes the entry-wise partial derivative of L̂. Let’s

look at one entry as an example. For a particular (xi, yi), let’s look at the partial derivative of the
log-loss over β j:

∂ log
(

1 + exp
(
− yi · (β0 + ∑

p
j=1 β jxi,j

))
∂β j

=
exp

(
−yi · (β0 + ∑

p
j=1 β jxi,j)

)
1 + exp

(
−yi · (β0 + ∑

p
j=1 β jxi,j)

) × (−yixi,j),

for any j = 1, 2, . . . , p. As for β0, the partial derivative is similar:

∂ log
(

1 + exp
(
− yi · (β0 + ∑

p
j=1 βixi,j)

))
∂β0

=
exp

(
−yi ·

(
β0 + ∑

p
j=1 β jxi,j

))
1 + exp

(
−yi ·

(
β0 + ∑

p
j=1 β jxi,j

)) × (−yi).

Taken together, we have obtained the gradient of L̂.
Lastly, we’ll show that the log loss, ℓ(x) = log(1 + exp(−x)) is a convex function. Recall that a

function is convex if and only if ℓ′′(x) ≥ 0, or equivalently, αℓ(x) + (1− α)ℓ(y) ≥ ℓ(αx + (1− α)y).

ℓ′(x) = − exp(−x)
1 + exp(−x)

=
−1

1 + exp(x)
,

ℓ′′(x) =
exp(x)

(1 + exp(x))2 > 0.

With a bit more calculation, one could show that for minimizing a convex function, the gradient
descent algorithm (starting from a random initialization) will eventually converge to a global
minimizer that is approximately optimal for minimizing L̂(β).

2


