DS 5220, Lecture 15: The Backpropagation Algorithm

October 25, 2024

In this lecture, we will provide an in-depth study of the backpropagation algorithm. First, let us consider a multi-layer, linear neural network example. I believe this is the simplest possible example, for which we could illustrate the key steps behind the backpropagation algorithm.

Example 1. *In a linear neural network, we assume that each layer uses a linear activation function. That is,* $\sigma(x) = x$. Suppose there are L layers in total. In each layer, we have one variable w_i associated with that *layer, for* $i = 1, 2, \ldots, L$ *. No bias is involved.*

The output of this network would be equal to

$$
f(x) = w_L w_{L-1} \cdots w_1 x.
$$

Suppose we consider the squared loss. Then, the loss function would be

$$
\ell(f(x), y) = (f(x) - y)^2.
$$

Here, let us work out the gradient of the above loss function, with respect to the weight variables $W = [w_1, w_2, \dots, w_L]$. In other words, we want to compute $\nabla_W \ell(f(x), y)$. We shall work backward. In other words, we will first find out $\frac{\partial \ell}{\partial w_L}$, then $\frac{\partial \ell}{\partial w_{L-1}}$, ..., finally $\frac{\partial \ell}{\partial w_1}$.

To facilitate this calculation, let us set up the input and output to a layer *i* as follows, for any $i = 1, 2, \ldots, L$:

- Input to layer *i*: This is $z_i = w_{i-1} \cdots w_1 x$.
- Output of layer *i*: This is $o_i = w_{i-1} \cdots w_1 x$ (since activation function is linear).

First, let us work on $\frac{\partial \ell}{\partial w_L}$. We can rewrite the loss as $\ell(f(x), y) = (w_L z_L - y)^2$. Thus,

$$
\frac{\partial \ell}{\partial w_L} = 2(w_L z_L - y) z_L
$$

Next, we look at

$$
\frac{\partial \ell}{\partial w_{L-1}} = \frac{\partial \ell}{\partial z_L} \cdot \frac{\partial z_L}{\partial w_{L-1}} = \frac{\partial \ell}{\partial z_L} \cdot o_{L-1}.
$$
\n(1)

Above, we notice that $z_L = w_{L-1} o_{L-1}$. We can generalize equation [\(1\)](#page-0-0) to any intermediate layer as

$$
\frac{\partial \ell}{\partial w_i} = \frac{\partial \ell}{\partial z_{i+1}} \cdot \frac{\partial z_{i+1}}{\partial w_i} = \frac{\partial \ell}{\partial z_{i+1}} \cdot o_i,
$$
\n(2)

because $z_{i+1} = w_i o_i$.

Based on equation [\(2\)](#page-0-1), we will then need to work out the expression for $\frac{\partial \ell}{\partial z_{i+1}}$, for any $i =$ *L* − 1, *L* − 2, . . . , 1. Here, we will again set up a recursion to derive this:

$$
\frac{\partial \ell}{\partial z_i} = \frac{\partial \ell}{\partial z_{i+1}} \cdot \frac{\partial z_{i+1}}{\partial z_i}
$$

$$
= \frac{\partial \ell}{\partial z_{i+1}} \cdot w_i,
$$
(3)

using the fact that $z_{i+1} = w_i z_i$, since the activation is linear.

To summarize this discussion, we may write the backpropagation algorithm corresponding to Example [1](#page-0-2) as follows:

- 1. First, compute z_1, z_2, \ldots, z_L according to the forward pass.
- 2. Then, compute

$$
\frac{\partial \ell}{\partial z_L} = \frac{\partial (w_L z_L - y)^2}{\partial z_L} = 2(w_L z_L - y)w_L
$$

- 3. For any $i = L 1, ..., 1$, use equation [\(3\)](#page-1-0) to get $\frac{\partial \ell}{\partial z_i}$ from $\frac{\partial \ell}{\partial z_{i+1}}$.
- 4. Finally, use equation [\(2\)](#page-0-1) to get $\frac{\partial \ell}{\partial w_i}$ for any $i = L 1, L 2, ..., 1$.

We can streamline steps 2-4 in a more compact way, leading to the backward pass as follows:

- At layer *L*, calculate $\frac{\partial \ell}{\partial w_L}$ and $\frac{\partial \ell}{\partial z_L}$.
- For any $i = L 1, L 2, ..., 1$, calculate $\frac{\partial \ell}{\partial w_i}$ and $\frac{\partial \ell}{\partial z_i}$ based on equations [\(2\)](#page-0-1) and [\(3\)](#page-1-0).

Example 2 (Two-layer, multi-dimensional ReLU network)**.** *In the above example, we considered a one-dimensional setting, thus ignoring the complexity introduced by matrix multiplications. Now, let's take that into account and do the calculation again. Suppose we have an input* $x \in \mathbb{R}^p$ *. We pass through a two-layer ReLU neural network with W*1, *b*¹ *in the first layer and W*2, *b*² *in the second layer. We shall consider a regression problem first and we'll discuss the case of classification problems after we finish this.*

For this regression problem, we can set $W_1\in\mathbb{R}^{p\times d_1}$, $b_1\in\mathbb{R}^{d_1}$, and $W_2\in\mathbb{R}^{d_1}$. For simplicity, let's not *worry about b*² *(incorporating that should be simple in principle). We can write the network output as*

$$
f(x) = \sigma(W_1^\top x + b_1)^\top W_2,
$$

where σ(·) *is the ReLU activation function applied to every coordinate of the input.*

Now, let's work out the gradient of the squared loss with respect to the three variables in Example [2.](#page-1-1) We need to calculate the following: $\nabla_{W_1} \ell$, $\nabla_{b_1} \ell$, and $\nabla_{W_2} \ell$. The last one is simple (note: illustrate vector calculus on the board):

$$
\nabla_{W_2}\ell = (2(f(x)-y)) \cdot \sigma(W_1^\top x + b_1).
$$

As for W_1 and b_1 , let us focus on $\nabla_{W_1} \ell$ (the case for $\nabla_{W_1} \ell$ should be similar). Since W_1 is a p by *d*¹ matrix/array, we shall look into an individual coordinate of *W*1, then we can extrapolate the patterns from that and summarize it in matrix calculus. Let *W*1[*i*, *j*] denote the *i*, *j*-th entry of the matrix *W*1. We shall look at

$$
\frac{\partial \ell}{\partial W_1[i,j]} = (2(f(x) - y)) \frac{\partial f(x)}{\partial W_1[i,j]}
$$
(4)

$$
= (2(f(x) - y))\frac{\partial (\sigma(W_1^\top x + b_1)^\top)W_2}{\partial W_1[i,j]}
$$
\n
$$
(5)
$$

Notice that for $\sigma(W_1^\top x + b_1)^\top$, except the for the *j*-th entry, the rest of the entries are independent of *W*1[*i*, *j*]. As for the *j*-th entry, by chain rule, the derivative is equal to

$$
\frac{\partial \ell}{\partial W_1[i,j]} = (2f(x) - y)\sigma'(W_1^\top x + b_1)[j] \cdot x_i \cdot W_2[j]. \tag{6}
$$

As a result, we may write the gradient as

$$
\nabla_{W_1}\ell = (2f(x)-y)x \cdot (\sigma'(W_1^\top x + b_1) \odot W_2)^\top. \tag{7}
$$

The above two examples illustrate the difficulty in terms of deriving the backpropagation algorithm. We now discuss the most general case to finish this discussion. Suppose we have *L* layers of feedforward neurons. From layer *i* to layer *i* + 1, the transformation goes as follow:

$$
z_{i+1} = W_{i+1}^{\top} o_i + b_{i+1}, \tag{8}
$$

$$
o_{i+1} = \sigma(z_{i+1}), \tag{9}
$$

for $i=0,1,\ldots,L-1$, where $W_{i+1}\in\mathbb{R}^{d_i\times d_{i+1}}$, and $b_{i+1}\in\mathbb{R}^{d_{i+1}}$. Until at the last layer, o_L is used in the loss function along with the final label of *y*.

Suppose we already knew what is $\frac{\partial \ell}{\partial z_{i+1}}$ and $\frac{\partial \ell}{\partial W_{i+1}}$. Based on these results, we are going to use them to infer $\frac{\partial \ell}{\partial z_i}$ and $\frac{\partial \ell}{\partial W_i}$.

Since z_i is a vector of dimension d_i , we'll use the multivariate chain rule 1 1 , which requires us to look into every coordinate of *zⁱ* . Let *j* be any value between 1 and *dⁱ* . Then,

$$
\frac{\partial \ell}{\partial z_i[j]} = \langle \frac{\partial \ell}{\partial z_{i+1}}, \frac{\partial z_{i+1}}{\partial z_i[j]} \rangle \tag{10}
$$

Here, notice that

$$
z_{i+1} = W_{i+1}^{\top} \sigma(z_i) + b_{i+1}
$$

Therefore,

$$
\frac{\partial z_{i+1}}{\partial z_i[j]} = W_{i+1}^\top[:,j] \cdot \sigma'(z_i)[j]
$$

Hence, we can write the above into equation [\(10\)](#page-2-1), leading to

$$
\sigma'(z_i)[j] \frac{\partial \ell}{\partial z_{i+1}}^\top W_{i+1}^\top[:, j] = \sigma'(z_i)[j] W_{i+1}[j, :] \frac{\partial \ell}{\partial z_{i+1}}
$$

¹[https://math.libretexts.org/Bookshelves/Calculus/Calculus_\(OpenStax\)/14%3A_Differentiation_of_](https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions) [Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions](https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions)

Thus, we find that

$$
\frac{\partial \ell}{\partial z_i} = \text{diag}\left(\sigma'(z_i)\right) W_{i+1} \frac{\partial \ell}{\partial z_{i+1}} \tag{11}
$$

With this result, we could apply recursion to get $\frac{\partial \ell}{\partial z_i}$, for all $i = L, L - 1, \ldots, 1$.

We could also follow the above procedure to derive $\frac{\partial \ell}{\partial W_{i+1}}$. This is by taking the chain rule on equation [\(8\)](#page-2-2). In particular, we could verify that $\frac{\partial \ell}{\partial W_{i+1}} = o_i(\frac{\partial \ell}{\partial z_{i+1}})$ *∂zi*+¹) [⊤] (the details are omitted; please try to verify it by yourself after class!).

Consequences: Vanishing & exploding gradients.

Exercise: Can you come up with an example to explain why vanishing gradients can happen within backpropagation?