
DS 5220, Lecture 15: The Backpropagation Algorithm

October 25, 2024

In this lecture, we will provide an in-depth study of the backpropagation algorithm. First, let
us consider a multi-layer, linear neural network example. I believe this is the simplest possible
example, for which we could illustrate the key steps behind the backpropagation algorithm.

Example 1. In a linear neural network, we assume that each layer uses a linear activation function. That is,
σ(x) = x. Suppose there are L layers in total. In each layer, we have one variable wi associated with that
layer, for i = 1, 2, . . . , L. No bias is involved.

The output of this network would be equal to

f (x) = wLwL−1 · · ·w1x.

Suppose we consider the squared loss. Then, the loss function would be

ℓ(f (x), y) = (f (x)− y)2.

Here, let us work out the gradient of the above loss function, with respect to the weight variables
W = [w1, w2, . . . , wL]. In other words, we want to compute ∇Wℓ(f (x), y). We shall work backward.
In other words, we will first find out ∂ℓ

∂wL
, then ∂ℓ

∂wL−1
, . . . , finally ∂ℓ

∂w1
.

To facilitate this calculation, let us set up the input and output to a layer i as follows, for any
i = 1, 2, . . . , L:

• Input to layer i: This is zi = wi−1 · · ·w1x.

• Output of layer i: This is oi = wi−1 · · ·w1x (since activation function is linear).

First, let us work on ∂ℓ
∂wL

. We can rewrite the loss as ℓ(f (x), y) = (wLzL − y)2. Thus,

∂ℓ

∂wL
= 2(wLzL − y)zL

Next, we look at

∂ℓ

∂wL−1
=

∂ℓ

∂zL
· ∂zL

∂wL−1
=

∂ℓ

∂zL
· oL−1. (1)

Above, we notice that zL = wL−1oL−1. We can generalize equation (1) to any intermediate layer as

∂ℓ

∂wi
=

∂ℓ

∂zi+1
· ∂zi+1

∂wi
=

∂ℓ

∂zi+1
· oi, (2)

because zi+1 = wioi.

1

Based on equation (2), we will then need to work out the expression for ∂ℓ
∂zi+1

, for any i =

L − 1, L − 2, . . . , 1. Here, we will again set up a recursion to derive this:

∂ℓ

∂zi
=

∂ℓ

∂zi+1
· ∂zi+1

∂zi

=
∂ℓ

∂zi+1
· wi, (3)

using the fact that zi+1 = wizi, since the activation is linear.
To summarize this discussion, we may write the backpropagation algorithm corresponding to

Example 1 as follows:

1. First, compute z1, z2, . . . , zL according to the forward pass.

2. Then, compute
∂ℓ

∂zL
=

∂(wLzL − y)2

∂zL
= 2(wLzL − y)wL

3. For any i = L − 1, . . . , 1, use equation (3) to get ∂ℓ
∂zi

from ∂ℓ
∂zi+1

.

4. Finally, use equation (2) to get ∂ℓ
∂wi

for any i = L − 1, L − 2, . . . , 1.

We can streamline steps 2-4 in a more compact way, leading to the backward pass as follows:

• At layer L, calculate ∂ℓ
∂wL

and ∂ℓ
∂zL

.

• For any i = L − 1, L − 2, . . . , 1, calculate ∂ℓ
∂wi

and ∂ℓ
∂zi

based on equations (2) and (3).

Example 2 (Two-layer, multi-dimensional ReLU network). In the above example, we considered a
one-dimensional setting, thus ignoring the complexity introduced by matrix multiplications. Now, let’s
take that into account and do the calculation again. Suppose we have an input x ∈ Rp. We pass through
a two-layer ReLU neural network with W1, b1 in the first layer and W2, b2 in the second layer. We shall
consider a regression problem first and we’ll discuss the case of classification problems after we finish this.

For this regression problem, we can set W1 ∈ Rp×d1 , b1 ∈ Rd1 , and W2 ∈ Rd1 . For simplicity, let’s not
worry about b2 (incorporating that should be simple in principle). We can write the network output as

f (x) = σ(W⊤
1 x + b1)

⊤W2,

where σ(·) is the ReLU activation function applied to every coordinate of the input.

Now, let’s work out the gradient of the squared loss with respect to the three variables in
Example 2. We need to calculate the following: ∇W1ℓ, ∇b1ℓ, and ∇W2ℓ. The last one is simple (note:
illustrate vector calculus on the board):

∇W2ℓ = (2(f (x)− y)) · σ(W⊤
1 x + b1).

As for W1 and b1, let us focus on ∇W1ℓ (the case for ∇W1ℓ should be similar). Since W1 is a p by
d1 matrix/array, we shall look into an individual coordinate of W1, then we can extrapolate the

2

patterns from that and summarize it in matrix calculus. Let W1[i, j] denote the i, j-th entry of the
matrix W1. We shall look at

∂ℓ

∂W1[i, j]
= (2(f (x)− y))

∂ f (x)
∂W1[i, j]

(4)

= (2(f (x)− y))
∂(σ(W⊤

1 x + b1)
⊤)W2

∂W1[i, j]
(5)

Notice that for σ(W⊤
1 x + b1)

⊤, except the for the j-th entry, the rest of the entries are independent
of W1[i, j]. As for the j-th entry, by chain rule, the derivative is equal to

∂ℓ

∂W1[i, j]
= (2 f (x)− y)σ′(W⊤

1 x + b1)[j] · xi · W2[j]. (6)

As a result, we may write the gradient as

∇W1ℓ = (2 f (x)− y)x · (σ′(W⊤
1 x + b1)⊙ W2)

⊤. (7)

The above two examples illustrate the difficulty in terms of deriving the backpropagation
algorithm. We now discuss the most general case to finish this discussion. Suppose we have L
layers of feedforward neurons. From layer i to layer i + 1, the transformation goes as follow:

zi+1 = W⊤
i+1oi + bi+1, (8)

oi+1 = σ(zi+1), (9)

for i = 0, 1, . . . , L − 1, where Wi+1 ∈ Rdi×di+1 , and bi+1 ∈ Rdi+1 . Until at the last layer, oL is used in
the loss function along with the final label of y.

Suppose we already knew what is ∂ℓ
∂zi+1

and ∂ℓ
∂Wi+1

. Based on these results, we are going to use

them to infer ∂ℓ
∂zi

and ∂ℓ
∂Wi

.
Since zi is a vector of dimension di, we’ll use the multivariate chain rule1, which requires us to

look into every coordinate of zi. Let j be any value between 1 and di. Then,

∂ℓ

∂zi[j]
= ⟨ ∂ℓ

∂zi+1
,

∂zi+1

∂zi[j]
⟩ (10)

Here, notice that
zi+1 = W⊤

i+1σ(zi) + bi+1

Therefore,
∂zi+1

∂zi[j]
= W⊤

i+1[:, j] · σ′(zi)[j]

Hence, we can write the above into equation (10), leading to

σ′(zi)[j]
∂ℓ

∂zi+1

⊤
W⊤

i+1[:, j] = σ′(zi)[j]Wi+1[j, :]
∂ℓ

∂zi+1

1https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_
Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions

3

https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions

Thus, we find that

∂ℓ

∂zi
= diag

(
σ′(zi)

)
Wi+1

∂ℓ

∂zi+1
(11)

With this result, we could apply recursion to get ∂ℓ
∂zi

, for all i = L, L − 1, . . . , 1.
We could also follow the above procedure to derive ∂ℓ

∂Wi+1
. This is by taking the chain rule on

equation (8). In particular, we could verify that ∂ℓ
∂Wi+1

= oi(
∂ℓ

∂zi+1
)⊤ (the details are omitted; please

try to verify it by yourself after class!).

Consequences: Vanishing & exploding gradients.

Exercise: Can you come up with an example to explain why vanishing gradients can happen
within backpropagation?

4

